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PREFACE

This calculus is offered to. you as a book, not merely as .a manual of

instructions. There is no fratntion of presenting the subject as a loosely

Strung-together,segurce of topics composed only as'a crib to help you recite

the ''bright" answers examination qtrestions.

The authors have tri d to convey their own attitude abOut the subject as

it is rega ded maturely;
)

development tesed upon a very small number of-

'major the s, with many lesser themes all tightly interwoven with the major

ones. Thi sense of plot of total ,structure is worth your effort to compre-

hend.

details no aonger confuse but take their proper place in relation to the

grand structurk

When the calculus is seen in this perspective, the multitudinous

Although calculus is an old part of the body of human thought it remains

alive and useful. To us, who have had to think hard about what._

we wished to say about the calculus (and even whether it was worth adding.yet

another book to the'dense population), it has been a high intellectual adven-

ture. Even though the subject is old and well-explored, each of us gained

new insights in re-creating it for himself. We envy you, to whom the subject

is entirely new; you will.have the'pleasure of re-creating ft entire. We

hope that you will find the task of re-creation,as we did, always absorbing,

sometimes amusing, and often exciting.

r
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FOREWORD

Use of the Text

The sections, definitions, theorems, examples, figures, and exercises-

in the text are labeled according to the chapter. For example,Sectiot 6-4

is the fourth section in Chapter 6, and Example 6-4c is the third example in

Section 6-4.

If only one corollary follows a theorem'orlemma the corollary is not -

numbered. If more than one follows,-then the corollaries are numbered in-,

order without numbered reference to the theorem; thus, Theorem 5-2b is

followed by Corollaries 1 and 2.

Sections and exercises marked with the symbol A (for a. Himalayan peak)

will generally present an extra challenge. You will want to work through

this material "because it is there." =

It is expected that a handbook of mathematical' tables will be readily

available and, hence, no extensive reproduction of tables and formulas is

provided-here.
,

A general summary _of prerequisite.material is given in appendices.

Some of the- symbols used 'in-the text usually have a restricted denotation

(e.g-,_the early letters of the alphabet are generally reserved for constants,

n for an 'integer). We shall use the Greek alphabet (Appendix 0) as =well as

'the - English.

Appendix 1 treats the general properties of real numbers. A thorough

understanding Of those properties disCussed in Sections A1-2, A1-3, and A1-4

'is essential to the work on limits'. For mostreaders, the material in

Section Al -., "Intervals, Neighborhoods," is new and will require special

attention. Section A.1-5 treats the completeness,of the real number system

and-is essential for'reading in appendices which amplify the text (App. 4,

et seq.).

iii



A-N).,p
endix 2 summarizes basic ideas involving functions and the properties

of.,
5Pe

functions, The text presupposes familiarity with functional termin-
Ipg and llotation In particular, Example 2-5c and Section 4-4 assume
L

know-
z)f circular-Ircular (trigonometric) functions.

r
A

.1Z) ,en5iix 3 gives an account of proof by mathematical induction, a method

"411'1 -- be useful in the solutions of many exercises (e.g., Exercise's.3-4,

1)10.
1) ,

-n
c)tation (A3..2) is first Used in Section 6-1. A working knowledge

thead symbolism is essential for facility in the work on integration.

ale
aApendices la.re_also used to supply information which is not ordinArily

;1...vell 1.n
,aN fIrSt C 82C.1111.1S course. For the sake of more complete understartding

subject -You may wish to react some .of this material.

Th
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Chapter 1

INTRODUCTION

The calculus is a powerful and flexible instrument for obtaining useful

solutions to an astonishing variety of problems in science, technology, and

industry. It is also a mathematical discipline in which theorems arddeduced

from carefully stated postulates and definitions and for which faultless logic

is primary These are complementary aspects of the subject. To be capable of

making the most efficient practical use of the calculus it is important to

understand the reasoning upon which its techniques ai-e based. To-understand

why the concepts and theory of the calculus are signiflcant,'even to care

alma developing the theory in the first place, it is- important to be able to

interpret the concepts and theory in terms of models, whether geometrical,

physical or other, to which they apply. In this text we shall find the origins

Of the ideas of the calculus in practical problems; we shall attempt to express

these ideas precisely so that:we may reason about them logically; finally, we

shall return to problems and apply the theorems resulting from our reasoning.

The two basic ideas of the elementary calculus are "derivative" and

"integral". It is easy to appreciate these ideas intuitively and know why

they are useful before formulating them precisely. Here/We shall consider

these_ ideas as-they arise in the solution of specific problems.
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1-1. "Best-Value"-Problems. The Derivative.

-sit is in the nature of the human enterprise to try to get the best of

everything: a manufacturer seeks the smallest unit cost for his product

the highest possible price; a student tries to complete his homework assiLr-L--

ment in the shortest possible time; a demagogue expounds the political phi-

losophy which he believes will garner the gr atest number of votes. It is

seldom clear what must be done t6 get the be t value. We may even fail to

make the observation that we have a problem f this kind. Immediately below

the surface of daily life there are countless "best-value" problems which are
often overlooked because ach our consciousness cloaked in a wealth of

detail which must be strip. .,,ay before the central problem is perceived.

Not all of these problems can be solved by the calculus alone, but many of

them can, and it is just 'such a problem which we now consider.

In the solution Of thiS_Problem, we shall go far beyond the casual acci-

dent of humdrum experience from which it came. The solution introduces some

of the deepest ideas in the history of human thought and in understanding the

solution you will gain an intuitive appreciation of t!,,--.r ideas. Furthermore,

the systeinatic approach by which the problem is sci be appreciated not

oitly for the particular solution of this very sioe: _em, but for the

possibility of using the same method for the solutions of an extensive, impor-

tant class of "best - value" problems.` Eventually (Charter 5), we shall see how

this systematic attack can be sharpened to give an extr=ely simple and direct-

method of calculation for obtaining best valer...

This is a problem from my am fond, of
books to the point- of avarice and in time acquired a sub-
siantial number. Several years ago, whe I :ad to move my
hdiashol& from one city tc ancner I was ao:Dall:-d at the cost
of moving the enormous dead of my bool:s interstate
van. Upon investigating a nu:-Lber o± alte.-mative,,. I found
that there is a special book rate for parcel post and that
this offered by far the'cheapest method of shipping books.
The post office restricts the r7ze of parcels. To keep the
effort of packing to a minimum, : cough- out tte largest pos-
sible cartons complying with the pest office requirement at
that time.

The post office regulations for parcel post state, "Parcels mailed ate

first-class post office in the United States for delivery at ... any ... first-

class post office ... must not exceed 72 inches in length and girth combined."

To apply this regulation we must know that 'the length of a rectangular carton

is that of its longest edge and the girth/is the-perimeter of the cross section

perpendicular to that edge. Our problem is to determine the dimensions of the

carton of largest size'complying with the post office, regulation.

2
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For simplicity we consider only cartons 'with a square cross

in-particular, the box were a cube and e

then the girth would be 4e , and for the

postal regulations

or

1-1

section. If,

the length of an edge in inches

cube of maximum size permitted by

!

e -I- 4e = 72

e =
5
-72 .

Does a cube give us the largest carton that can be sent by parcel post?

In order to answer this question we let x

of a side of the square cross section -and y -the length in

longest side of, the carton,-so x., Taking x as large as, nossib.le for a

denote the length. in inches

inches of the

given y we require that

(1) y 72 ,

Under these conditions we attempt to maximize the volume of the carton,

2V x y .

Setting y = 72 - 4x in the expression for 7 we obtain

(2) V ..x2(72 - 4x) ,

a formula ,valid so long as y > x > 0, that is, from (1), so long as

0 < x' 72< These conditions define a function f : V .

- Our-problemis not so much-to d

rano of the functioii, although that

find d value of a in the domain of

value of the volume is les-s relevant

the box hi.ving that capacity.
.46

etermine the largest value max in the
information may also-be useful, but. to

f for which f(a) = V
ax
--the maximumm

for our purpose than the dimensions of

In order to estimate the location of a maximum value, we

-of the function. The following table of values

sketch a graph

(extending beyond x =
72
5

for convenience in sketching) gives US the coordinates

calculated points of tie graph of f

of a few easily

4E

To see thA a square cross section is best for a given girth

s = g /1- and obtain expressions for adjacent sides of a rectangular

the form s - c and s c. For a given gicrth, hence, for

area s
2

- c
2

of a cross section is clearly est when

that for a given girth the volume is largest whe.n the

3

g , we set

section in

a given s , the

c = 0. It follows

cross section is square.
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Figure 1-la

18

'---

The curve does suggest the approxi ate location of a peak of the graph and the
..'-4

table does give some precise information, such as

V
ax

>1*(10) = 3200 .m-
No matter how much information we get this way we shall always 1De somewhat

dissatisfied. In the first place, we have exact information about the function

only at a few calculated points so that even if we stumbled upon the maximum we

Jmdght not be aware of it. In the second place, the idea of drawing.a smooth

curve through _the'calcuIagied points has its limitations. Fo16,-example, without

further calculation we could not be surest. at the unbroken curve in Figure 1-la

more reasonably represents the function an the dashed one, and, furthermore,

we cannot eliminate this kind of ambigtiity completely by calculating more

points. One of our objectives is to devise systematic methods for resolving

these difficulties.

13
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Thinking of the problem in visual geOmetrical terms we see that the eon -

dition for a maximum, f(a) = VAX , means that the graph of f cannot cross

over the horizontal line through :'("aL ,f(a),) to a hjogher point. 'The directI8n

of.the graph at (a , f_(a)) must therefore also be horizon-tall,' for if the \

gi-aph met the line at an angle, the two would have'to cross. We conclude

that to locate a peak of the graDh, we seel't it among the points where. the

N

direction of the graph is horizontal.

In order to make some general use of this geometrical idea we express it

numerically so that it may serve as a basis for computation. The direction of
the graph at (a, f(a)) is determined by the angle the graph Makes with the
line y = f(A,) parallel to the x-axis. For our purposes the direction is
most convenient measured by the tangent of this angle, the slope of the

graph. We represent the direction of the graph numerically in terms of slope

and reformur-la:te...our idea: at a peak of the graph the slope is zero.

We int oduce the function f' where f' -(x) is "the slope of the graph of
f at the poi t f The function f' is called the derivative of f

(meaning "derived' rom "f "), and the slope f'(x) of the graph of f- at

(x ,f(x)) is called the derivative of f at x. When there is a peak of the
graph of f at k.a.,f(e."), we have f' (a) = 0 ; to locate a peak, then, we
look among the zeros of

Turning back to our original problem we find that tlaus far we have only

replacedit by new problems. In particular, we have not-clearly defined the

-glope of the graph of f At a given point, the derivative at the point.

Fur=thermore, even if the derivative at the point is defined, there remains the

-problem of describing the unction f' in such a way that we can find its

z4ros, in order to-locate a peak of.the.graDh of f.
,

By now you_ may feel-that we are very far from thepoint of
beginning and that you would like to know what we have accomplAshed.
What we have done is this: we have replaced a problem about.which
we know very little with a problem about'which. we know a great deal:
to locate a Beak of one functionwe look among the zeros of another
function (the:-derivative). It may seem to you that the line of
approadh.-is indirect and It is still -not' clear that it will be fi-ult-
ful. We promise that it Will be fruitful: You should not think that
the discovery of such an avenue of nvestigation requires superhuman
powers- Whenever you become unduly impressed by the, ingenuity and ".
Dower of mathematical methods, reflect that an investigator will try

Co

. Here we are making an,, out.might assumption, that the graph has s-a definite
direction at each point. In particular, the graph may not have a sharp corner
at , a))

t
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not one but %ny approacheS., To his admiring audiencdhe'2.-441'pre-
sent the one idea that worked and never mention the fairthat
filled his waste basket with reams of paper. In fact,- we' briefly
considered and rejected one idea already, that of findin,ghe .
maximum value of. f(x) by examining a number Of its values...

Before, we go-on to solve our best-value problem,,:it should
be said openly that the method of solution we rejected was. a-per7,
fectly practical one.. Without knowing what you are now
about such problems, you might have proceeded by calculating yalUes
and come very close.td.the optimum solution.* The point is:that
problems of this kind arise often, and if we have a great many
Similar problems it pays to devote some attention to :Wore refined.
methods of solution. Similarly, if.you wished to make just.onepin'.
you would be content to do it by hand,- but if you wisheetOProduce
pins by the million you would pui..a great deal of effort, -into
signing suitable machinery for the purpose. YOU will soonleali1,
methods that will make the _solution of our present problemampear.
no more consecuentj:al than the production of a single pin in'the,.
operation -of a:pin factory.

--

To attack the problem of.defining the derivative we resort to,a .standard .-"

method of the calculus.

We seek a-number. This number will be described by approximations.
p

The set of approximations must be adequate; that is, there must-always

be an approximation which is closer to the number than any error we

May tolerate, no matter how, small the specified error tolerance! In

the language of the calculus we say .the number is the limit of the`':

Set Of approximations.

To approximate the slope of the graph of f at a point (a. f(a)).

,consider the arc of the graph between the point (a ,f(a)) and another point

7.`

we

Figure 1-lb

(x ,f(x)). 'ThestateMent that the

graph of f at (a ,f(a)) has a cer-

tain slope f1(a) will mean now that

it is possible to approximate f'(a)

ciosely.by the slope of the chord bet-

ween (x , f(x)) and (a , f(a)). Nbre

precisely, the error in approximating

f'(a) by the slope .of the chord can

be reduced below any given:tolerance

by taking x close enough-to a

(Figure 1-1b),

Since the.graPhis nearly horizontal irf the neighborhood of a peak, the
penalty for missing the .exact location of the peak can be expected to be quite*
small. We shall return.to this Point later in the text.
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Now we are'ready to attack the box problem directly. For

f(x) = x2(72 - !.x) the slope of the chord between (K,f(x))-

is the ratio

f(x) - f(a) x2(72 - 4x) - a2(72 4a
x - a x - a

72(x
2

a
2

) - 4(x3 a3)
x - a

x - a
[72(xx - a '1

and
C

4(x2 + ax a2)1. -

%

When x = a the ratio is algebraically meaningless since tile denominator is

zero. This is to be exoe'cted since thejseometricanterpretation of the ratio

as the slope of the chord joining two points loses its meaning if- (a, f(a))

and (x ,f(x)) represent the same point. For any value of x other than a

We note that we have

and the other factor

x - a
x - a

72(x + a) - !.(x2 + ax + a2)

.

is a polynomial which at x = a has the value 144a - 12a
2 We shall prove

later for,a polynomial function- p(x) that it is possible to approximate. P(a)

to within any fixed margin of error by taking- x sufficiently close to a.

It follows that the slope of the graph at (a, f(a)) is

f' (a) = 144a - 12a2

Now we use the criterion that the slope of the graph

zeros of f' occur at a =.0 and a'= 12

best value. Having eliminated every other

maximum must occur

at a peak is zero. The

; clearly, f(0) = 0 is not the

possibility, we see that the desired

at x = 12 . In conclusion, the largest carton with length

plus girth of 72 inches has square ends with 12-inch sides and a lehgth of

24 inches.

You will

-

have noticed that the actual computation :Leading to the..solution

is quite short. Most of, the effort and tithe was spent

siderationa,underlying this method of solution. Later
a

and the labor of solution will then be almost neg-

produCed,y:et another problem: if we want to find

we _know the zeros of f' then which of-these

write out f'.(a) on sight

ligible. Finally, we lave

the maxicium of and

in explaining the cOn-

we shall see that we may

zeros--if any--yields the beat value we are seeking?' This question'we shall

leave to be- answered later in the
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Exercises 1-1

This set of exercises is to provide practice in formulating app2x_ie prob-
lem's mathematically.

.

1. ExpreSsthe area of a semicircle as a function of itsperim/eter.,
...

2. A rectangle is inscribed in a circle of radius R . Expres
/
the

the rectangleas a function of the length of one side.

3. Atank'has'the form of a right

dircularsCylinder capped by hemi-

spherical ends. If its total volume

is V , express the length of the

cylinder as a function Of its radiuS.
/-

4. Determine the edge of a regular tetrahedron inscribed in a sphere as a

0

DIRECTIONS: Numbers 5-11. Translate the-given:information 'in, such a way as
to discover a function f which may be maximized or minimized and write an

-equation defining f(x) . (You will be asked to solve the problem later on
in the c se.)

IlIustr ive Example: \ .

Find the right circular:eylinder:of greatest volume that can be'inscribed
in a sphere' of radius R .

area of

function of the radius R .

'Solution:

Consider a plane cross-section of

the figure containing the axis of the

cylinder and let r and 2h denote/the

radius and height of the cylinder,

respectively. The volume of this

cylinder is

V = 2rchr 2

2Swhere ;
r
2

h2 R .

Thus we have to maximize

V = f(h) =-21-ch(R2 - h2) 0 < h < R

5. What point on the ellipse x2 + 4y2 = 9 is nearest the point (1,6) ?
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A rectangle has two of its vertices on the x-axis and the other two above.

_the axis on the parabola y = 6 - x
2

What are the dimensions c.f such a

rectangle if area; is to be a maximum?

7. A rectangular sheet of galvanized metal is,bent to form the sides and

bottom of a trough so that the cross section hds this shape:

If the metal is 14 inches wide, how deep mast the .rough be to carry

the most water?

8. The tank described in exercise 3 above is to be made in the most economi-

cal way. If the material fir the hemispherical ends costs twice as much

per square foot as that for "the cylindrical part, 'find the most economical

dimensions. (That is, find "cost" as a function ofeither the radius or

the length.)

9. Find the right circular cylinder of greatest volume that can be inscribed

in a right _circular cone of radius r and heights h .

10. Find the length of the longest rod which can be carried horizontrally around

a corner from a corridor 10 ft. wide in to one 5 ft. wide.

11. The lower right-hand corner of a

page is-folded over so as to reach
ti

the left. edge in such a way that one

end point of the crease is on the .

right edge of the pageNand the other
I (

end point is-on the bottom edge of f

the page, as in the,figuzje. If the.
I

i

N...;00Kidth bf the page.is co inches, ..._..;

find the minimum length of the crease. C

12. For f(x) = 44 + 4x - 13x2 t 9x1 we give certain of the fanctional

values and a graph on whidh the points of the table are Shown. Sketch a

graph through the points. Where do you think the raaximut. 'value of f- is?

.

x - 2 -1 0 a 2 3

f(x) -304 0 44 0 -304

L
4



a.

I 111=11 111M111.1
11111111111111111111111111111111111

1111111111111111111111111Mloo1111 1111
11111=11111111111
1111111111111111111111 -1 111111111111111

i 111111 1111 -100 11111111111=1111

111111111111111111111111111111.1111M111111111

13. Approximate the maximum value of the function

f(x) = 39 - 640x2,- 1280x3 6!0x1 .

5

1/4
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AP

1-2. Area. The Integral.

The general concept of plane

like that Of the direction of a cu

1-2

area is another of those geometrical ideas--

rve at a given pointWhich remains elusive

unless conceived in terms of limit s. We already know a great deal about areas

from geometry. We know how to calcu-

late the areas of triangles and, hence,

the areas of all figures built up_of

triangles, that is, of all polygons.

It is a problem of another kind to

determine the area of a region with

curved. 'boundaries like -the shaded

region in Figure 1-2a.

Figure- 1 -2a

You may know about the ancient Greek approach to the problem of determin-

ing. the area of a- circle: the area is described as the limit of areas of regu-

larinscribed and circrinicribed polygons. The Greeks were also able to calcu-

late the areas of-sections of f-A parabOla,that is, regions bounded by a line

segment -and a parabolic arc. This was, in substance, the Greek Contribution to

the - theory of area.

In the modern theory of area we-_ successfully make general use of the basic

idea of determining the area of -a given region as the limit of approximations

by polygonal regions: You may wonder,then, why the Greeks were not able to

generalize this method. Historians usually attribute the limitations of the

Greeks in this field to-a,lack of=adequate general schemes for operating with

numbers. It seems that the Greeks customarily thought of real numbers as

magnitudes of geometrical objects rather than as entities. studied independently

of geometry. Abwadays we have a broad base for thinking" both geometrically and

numerically, and=wetake whichever point of view is the more convenient for:- the'"

problem at hand. The enormous flexibility of this dual approach will enable

you to solire handily'problems which would have baffled the greatest Greek
JO

mathematicians.

To turn: the geometrical description of the .problem into .a numerical one

we int4oduce a coordinate system in the plane. For simplicity we place the

axes so' that the region in queS'tion is contained in the upper half,- plane,

, as in Figure 1-2a. Next we attack the _problem of descrfbing'tile.:2-egion

numerically. We ,know that some curves are_the'graphs.of functions, and weare'

thus led to think of describing the boundary curve in terms of functions. the
-Ck-/

only difficulty is that the boundary curve is closed, so that a vertical line

gill
generally meet the curve more than once. In Figure 1-2a, the vertical

11



.J.11e. --= ,)t meets the curve do two points P and Q . For this special
!liecle -"Ile boundary curve Can be divided into a lower arc APB and an upper

AQBArc eo that a ver-Ed:Cal.iine.intersects each arc no more'than once. Each
Ce-11 .L.,: --' &

Arc , ""en-be considered as the graph of a nonnegative function defined on.
.all. ..ez-v,.., r 1,1

I-11.

's.t. La,,-'-i 2 that i.s, defined -for all values of x satisfying
.6k ../:)

1.1Q
ere a' is the abscissa, of A and b the abscissa of B . The

aa.
1:11.11:11.8 description of the boundary curve is now given in terms of two func-
iof0) a lower functbn f

1
:/;c---.1T1 tx) corresponding to the arc APB and an

14pe1. I-lhet.Ion f2 x,-,pf2(x) corresponding to AQB . Since we have two.tio),
ruile ''''-to deal with, we axe led to separate the calculation of the areatwt)
J."2.1t47 Pa...1-ts The area we seek is simply the difference between the areas.

Ifft) -1-e,-

11 tle
1°1"01.15 of theo' -t same type. These are regions cut out of the. stria be -

tivee, 1/.1....tical lirres through A and B L the smaller region is bounded
-1:'13.10Ve the graph of f and. below by the x-axis; the larger region is

b611/63- a'bc)\'-e '113'" e graph of f and below by-the x-axis (Figure 1-2a).2
We

havee ,edu the problem of determining the area of the given region

''' 'tre
ArobZem of delermining the .9%,e. of regions of a certain standard type,

sfg1011.sdsl..ibable izi terms of a single function. Of course, the regiOn wew
1

'tl,-130.gaP ---..as especially simPle. In more complicated cases i% vertical; line
et *.,

I110y P'e '11. boundary curve in rnore than two points and we shall then need01A-,
. .ovre --c- tu, .

to describe -the curve (Figure 1-2b). We can still,, acll .,_,-_-c p.inction's

671)1'6' "lie problem. by introducing standard regions, one for each function;the
,;-_,r1 , --,,the 0 1-sic)1.. a0111g.. so j.ri kallel-aa is eft for you to think about since the

de-ta5-15 l'-l'e not relevant at the moment_

Fig-tare 1-2b

r e left with the Probleta of calculating the area of a"%tandard'region,
for e) 0.111P1

the shaded region ire Figure 1-2c.

*

12
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,Figure 1-2d'

In general, given a nonnegative function f on an interval [a,b] , we

define the, corresponding standard region as the set. of points (x,y) for

which a < x < b and 0 < y < f(X) (Figure 1-2c). Again we are faced with

the problem of determining a number, the area of the standard region based on

the intervai [ a,b] , and the problem is apparently insoluble brany of the

old methods, unless the graph of f is composed of line segments. Again we

approach the problem by treating the

area as a limit. We approximate the

dr7a by polygonal areas as the Greeks

Y M : did, but we are looking for a system-

Y =

atic scheme of approximation, one that

doe's not depend on the particular func-

tion involved.

A first crude estimate of the

area A of the standard region on the

interval [a,b] can be given in terns

= f(x) of the minimum value m and the maxi-

mum value M of f(x). '(See Figure

1-2d.) Clearly, the rectangle of

height m based on the interval [,b]

is contained in the given standard.

Figure 1-2d region; the given region, in turn, is

contained in the rectangle of height M on the same base. For the area A of

x

the region ye ther have estimates from below and above:

9
13



. 1-2

m(b - rit)\ < A < M(b - a) .

If we approximate A by either of these estimates or by any value in between,
then we cannot be in error by more than (M - m)(b - a) ; that is,'by the area

'17 of the hatched region indicated in Figure 1-2d.

This simple method of estimation can easily be refined in a straightfor-
ward way, For this we only haveto observe that the minimum m* of f(x) on
any subinterval [x x

2 cannot be less than the overall minimum m (see
Figure l-2e); similarly the maximum M* of f(x) on the same subinterval
cannot be greater than the overall maximum M ; that is,

a

Y = M

m < mn and Me '< M .

Y = le

Y = m

y = m
y

a
xl x2

Figure 1-2e

b
x

*
If follows for the area A of the standard subregion based on the interval
[xl,x2] that

m(x2 - xl) < m*(x2 xl) < A* < M.(-(x2 - xiiii M(x
2

- x1) .

From this we see that the largest possible error in estimating the area of the .
subregion on [x

1'

(M - M)(x2 - xi) to

has been reduced from the former value of

- m )(x2 - xl)

This suggests that w= can reduce the maximum error in estimating the
entire area A by subdivi ng the,interval [a,b] into smaller intervals and
making the same sort of estimate of area separately for each subregion. The
sum of these estimates will be a better approximation to the area A than the

14 9
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.first. crude estimate. For the subdivision of Figure. l -2e this means reducing

the margin of error from the area of the hatched region in Figure 1-2d to the

area of the hatched region in Figure 1-2e.

The process of subdividing the interval [a,b] can be repeated indefin-

itely, and this suggests that we now try to reduce the maximum error below any

given tolerance by making the subdivision fine enough.' If we do so the area

will be given as the limit of both upper and lower estimates. The general

limiting process by which we have characterized area, in particular, is called.

integration, and the corresponding limit is called an integral..

A good way to see how this general approach works is to try it out on a
A

specific function. For this purpose we try to find the area of the shaded

region in Figure 1-2f. That is, we try to evaluate the integral A of

f : from 0 to 1 .

1.0

0.5

't

For this function

0.5

Figure 1-2f

we observe that f(x) increases as

1.0

increases. It follows that in any interval the minimum

at the left endpoint and the maximum value atthe right

interval [0,1] , the minimum value of the function is

the value of x

value of

. Hence,

f(0) = 0

mum is f(1) . The area of rectangles with these v
,

base of 1 are, respectively, 0 and " .1 . Thus, as a

we know that the area A we seek is between 0 and 1.

f(x) occurs

for the entire

and the maxi-

slues as heights and. a

preliminary estimate,

In order to refine the estimate, we subdivide the base into n parts and

denote the successive endpoints of the n subintervals by x0, xn

where 0 = x0 < x
1
< < xn 1 . For simplicity,in dealing wit f(x) = -1/7c,

15
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wechoose the endpoints so that

X (.112 _ (1)2 _ (212
= ni ' 2 `ni ' 3 `ni

n= 2 and n= 3 in Figure 1-2g,

.177. =4:7, 167; = n 3 = ; ...; that is,

We illustrate this procedure for

and then calculate lower and upper estimates

of the integral A for each of these cases by adding areas of rectangles. The

area of the hatched region in each figure is the difference between -the upper

and lower'estimates of the area A and represents the margin of error for the

particular subdivisions.
414

or

We

tc

0
1

6

For =
. -

n = 2

have reduced the maximum
7 1'
75- o

1 0

Figure. 1-2g

< A.< 1 17- +

7
$ <A < 15 .

error, of I obtained without subdivision = 1) -

.,"
.

7-4

3

n = 3

1

Taking n 3 , we obtain similarly

3
9

0 - -
3 9

+ 2 1 1 2 35- < A < +
9 3 9 9

16
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or

the maximum error is reduced to

13 22 ,< A <

9 1

In general, for subdivisions we have

A --C-9-F)2n n (2)1 -,n

or

Similarly,

1A > [0

+

1

+

+ 1

krri)

1

n [ 15)2
n

+

2pN)

n

2 5 +

2

n

n3

A < E2)n n

Or

(1)2]

(n

(n - 1)(2n - 1)]

1,)

21+
)
2 .12.

)(

fn - 1)2]
n

A< [1 - 1 + 2 - 3 t 3 5 -I-,

1-2

----Taking the difference between these results, we find for the maximum error. E
n

for this subdivision that c

;or

En
n3

1

[1
1 + 1 - 3 + 1 - 5 + ... + 1 ( 1]

4

E
n

=
1

El + 3 + 5 + ... + (2n - 1)]

The expression in braces is an arithmetic progression for which We knOw the

sum. We obtain, finsily

-1 2 1
En

113

n = .

For this method ofplibdivision, then, we can reduce the error below. any given

tolerance simply by taking n big enough: given an error tolerance a , we

simply take n > 1
.

a
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It may seem that we have not solved the problem of finding the number A.

All we know is that we can approximate A to within any given margin of error.

Nonetheless, in describing the integisal A of f from 0 to 1 as the limit

of, a set of approximations we have left no room for ambiguity. We still may

feel'cheated. We would like to have a familiar representation for A like,
2say, A
3

(which, by the way, is exactly what A is in this case). Later

we shall see how to obtain such a number in cases like this. Still, it is

important to know that we cannot always expect the solutions of our problems

to take a familiar form; often the simplest and most comprehensible descrip..

tion of a number is-its description as the limit of a. set of approximations.

I

27
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Exercises 1-2

1. Sketch-the graph of f : from x = 1 to x = 2

(a) Estimate the integral A of f from 1 to 2 using any method

thato.you wish.,

(b) If You use the me-.hod of Section 1-2 and .approximate A by
rectangular areas, what are upper and lower;' estimates for two

subintervals? What is the maximum error E
2

for this subdivision?

(c) Using the same procedure; subdivide the base into ja equal parts

and find the maximum error En for this subdivision.

Hint: Denote the successive endpoints x0 , xl , xn where

2 n + 21 n + 1
°'n

_
'
X2 =

.r

+2 =n +2

=
2n

a n n

How can the maximum error E
n

be brought below the error tolerance

0.03?

How can the maximum err= E
n

be brought below any given error

'tolerance?-
P

2. A circle of unit radius has an area of y square units.. Consequently,

we can approximate st by using the same method as in No. 1. Here we

shall use a. quarter of a circle and obtain an approximation for

ve use five equal Subdivisiong the

rectangles 'enclosed In the.desix'ed

region will have height.sof yi ,

Y2 ' Y3 , Y4 , and y5 while the

rectangles containing the desired

region will have altitudes of y0
'

yl , y2 , y3., y4 , where yi is

the ordinate of the quarter-circle

y =.14777 at x 1
5 '

1 4i = 0, 1, ..., 5 . The base of
2. 2.5 5 5 5

1each rectangle is . So

Ys

X

(Y +Y+Y+Y-i-Y) < (Y .4-Y+Y4-Y4- Y4)5 1 2 3 4 5 , 0 1 2 3

41.
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The difference between -these larger (2) and smaller (s) estimates is

1Or
55

Then the average of-the larger and smaller estimates can only differ from
-I- by less than half this difference; that is,

. 4

812 <

Bow many equal subdivisions should one take to obtain an approximation of
t correct to witi;in ± .01% of A ?

4.



1-3

1-3. The Scope of Calculus

4 Calculus is the study of the derivative and. the integral, the relatNon-

shipbetween these concepts and their applications. The derivative and the

integral may be interbreted geometrically as slope and as area, but these are

only two among a wide range of interpretations and applications. We emphasized

slope and area in the preceding sections in order to introduce parts of the

subject in an intuitive, geometrical way. However, the concepts of derivative

and integral are universal, and their incorporation into a calculus, a system

of reckoning, enables us to solve significant problems in all branches of

sciefife. The intuitive approach. we followed to this point is useful and sug-

gestive, but it needs to be and will be supplemented by more careful study that

indicates the broad range of application'of these methods as well as their

limitations. iSii'ore starting our systematic development of the subject, we

want to emphasize the universality of the concepts of derivative and integral.

We also want to- stress that the problems considered in the initial chapters

are primarily vehicles for the development of theory; they do not begin to

suggest the full scope of applications of the calculus.

'An intuitive geometrical introduction must necessarily be based on very

familiar steps. However, the steps are so familiar that it may not seem that

they-could lead to entirely new methods for solving completely different prob-

lems than those encountered 4 earlier courses--problems that range from the

spreading of rumors to the motions of the planets. No methods of the earlier

courses would help you to answer questions such as: How did you first hear

about calculus? How did you first hear about Helen of Troy? To fraMe such

questions mathematically, .we must first isolate some essential features: Some

stories spread 15.1.N. diseases; others die gut. If the story is too dull, nobody

bothers to repeat it. But if the story is good, some.of the people who hear'

it (and remember'it) pass it along. Starting from these ideas, how far could

you get by familiqr methods?

The same concepts that are basic to the spreading of stories are also

basic to the processes of forgetting and learning. So many of the facts' we

stuffed into our heads to pass a test and never used afterwards seem to have

vanished. Others, that we met repeatedly and actually worked with have become'

so Much a part of ourselves that we can hardly remember not_having known them.

Our first exposures.to these facts May not have taken, but repeated encounters

in different contexts finally left their mark.

Can we find a scientific explanation for-the way that stories spread--the

way'that we learn, and.forget, facts?. Starting from appropriate assumptions

21
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(the mathematical model) we can and later. shall describe some aspects of. -such

procetpes with the aid of the calculus. Such processes illustrate a broad
class of phenomena whose unifying features are the basic. mathematical models
for growth, decay; and. competition. Besides helping to describe the spreading
of ramous, and learning orsforgetting, these same mathematical models serve to
clarify such'natural phenomena as rpHiogctive decay, 'the attenuation of sun-

.
light by a cloudy sky, the progress of chemical reactions, the growth of bac-,

terial colonies, or the spread of disease through a city. In each of these
situations; the essential feature is that the amount of some quantity is
changi (with respect to time,.or distance, or whatever) at a rate proportional
to the amount already present. A process of this sort can be mathematically,,_

described by a certain type of equation (a differential equation) whose
solutions, at least in the simplest cases, are combinations of exbonentitill
functions.

.

Other proCesses of nature change in a cyclic or periodic way; they repeat
in identical form. each year, each day, perhaps each second. The planetary
motions, the tides, the daily routine of life; the harmonious chords of music,
the'propagation of X-rays through crystals--even the colored. sheen of butterfly
wings--all depend on-periodic phenqmena. For such processes, the rate of
cliange of the rate of ,change of some .quantity is (negatively) proportional to%

the quantity itself, and our mathematical model leads to a different class of
differential equations whose solutions, in the simplest cases, are combIna
tions of trigonometric functions.

cf.

With the calculus we may also investigate more complicated natural
processes that i nvolve a combination of ga:.owth or.:decay with some sort of
Cyclic behavior. We may also solve much simpler problems: How.much time
will.it take to drive 1000 miles if you start at a speed of 30,mlies'per hour,
but increase your speed by 3 miles per hour for each hour of driving? At what
angle should you throw a ball for it to travel as far'as possible? In what
directions with respect to the sun.are the rainbow colors-strongest?

These problems and many others which the Calculus solves involve- rates of
change; this is,the province of the differential calculus. A second. broad

variety of questions is concerned with totality--the summing of tmall effects;
this is"the province of the integral calculus, By recording your speed during
a long trip, with many accelerations and deceleratidns, can you calculate how
far the trip has taken you?

blotter, can we prediqt what

differential calculus we can

If we know how a single drop of ink spreads on a

happens if we' spill the whole bottle? With the

construct a mathematical model or radioa ive
processeS; how do we go about shielding a nuclear reactor? tTo explain th

22



sunburn we acquired on a cloudy dart', how much light reaches us from the entire

Overcast sky and by reflectiOn from our surroundings?-

Such summation or integration problems are closely related to the rate-

of-change or differentiation Problems: the total effects suit from an

addition of- small variations. Therefore we do not study separately an integral

calculus and a differential calculus. /We study a calculus comprising both
o

.differentiation and integration, and 4ach aspect helps us to, understand and

apply the other.

In this course we strongly emphasize 9,pplications, not only to show that

calculus provide useful methodsand concepts for the sciences, but because

so much of the calculus was developed to solve sjoecifd,c problems: Most of the

applications of mathematics we now -consider differ'from:those of previcias

courses in that they emphasize the effects of variation or summation.

"Calculus" was tailor-made to treat such problems. Mccept for the simplest:.>%

problems of this type, the methods of arithmetic, geometry, and algebra are

inadeluate,' and.even for the Simpler problems the Methods of calculus are the

more efficient.

The calculus was invented to treat problems of physics. As the calculus

grew into the larger branch of mathematics knOws as analysis its range of

application expanded enormously. To analysis we owe-much' of the progress in

the physical sciences and modern engineering, and more recently in the bio-
.

logical and social sciences. The concepts and operations introduced by the

calculus provide the right language and the right tools for the Major part of
0

the applications of mathematics to the sciences.

.

The great- advance which takes the 'calculus beyond algebra and. geometry- iz

based on the concept of limit. Our initial examples were chosen, not Merely

because they were simple, but because they ialustrate the essentials. The

basic limit procedure Of the differential calculus is typtfied'by the prdblem_

of finding the slope of a curve; the. basic limit procedure of the integral

calculus is typified by the problem of finding the area enclosed by a curve.
a -

The slope is found as a derivative, the area as an integral, .and superficially

'these appear to be unrelated. But there'is only one calculus: derivative and

integral arecomplementaryideas. If we take the slope of the graph of the

area function, we are. brought back to the curve itself. If we take the area

under the graph of the slope function, we find the original curve again. The

limit concept, in its_guises of derivative and integral, together with this

inverse relation between the two, provides the fundamental l-framework for the

calculus.
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In this first chapter, we have introducedthe caldulus

-4amPies that motivate the study of erivative and 'integral.

intuitively; we go on to indicate the mathematical problems

by elementary

Having started

that arise when we

try to give a precise foundation to our intuition; we solve these mathematical

problems, develop methods for obtaining solutions to basic problems involving

variation-and summation, and then apply these solutions systematically to
2

illustrate.the interrelations of the calculus and the sciences.

In our approach, we have tried to maintain a balance of topics and of

viewpoints that will meet the requirements of students who will become mathe-

maticians,' others who will become scientists primarily interested in applica-

tions,- and still others for_ whom mathematics will become simply one of many

deep intellectual experiences during their education.. For the student of

science, a fluent intuitive grasp of the subject may often seem to be his

primary need; for the student of mathematics, it may seem, that a careful

deductive development is more essential. These different viewpoints meces-,

sarily conflict on occasion, but more frequently they suppaement-each other in

providing.an overall picture of this new mathematical subject. -Both the

scientist and the mathematician gain by a complete command of both points of

view, and we regard this as an ideal worth striving for; the serious student

should.carry away a deeper appreciation of both these views and of their

interrelations.
m 4

Historically, 'the replacement -Of an 'intuitive bagis

method of infinitesimals) by:a careful logical structure

marked a vital phase ,in the development of mathematics.

from-complete- We are still.learninghow to combine t.4e.

Intuition in-apprbachingnewproblems with :the -effective

only to verifyour intuition, but to permit generalizations of broader applica-

bility. Today, most mathematicians appreciate the essential roles of both

intuitive and deductive procedures, not only for creating the calc-ulus but for

learning it, and we have tried tp make both equally available to you.

for the calculus (the

(the method of limits),

This phase is far-

inspired use of

use of logic, hot

summary,'we wish to show you how the effort- to solve important problems

-leads to methods of_the calculus; how the attempt to make the teat use of these

methods and-to- understand theil'' full scope leads%to the development of the

'calculus as'an.independentstuay;- and how the products of this study .in turn.

:lead -to deeper insight unto the Original problems. JUst-as science enriches,

mathematics by prbviding concrete models arid significant problems, mathematics
- -

enriches science by providing system and .organization, as well as solutions of

problems.



Exercises 1-3

1-3

Phe following is a qu tetion from G. Polya: "If you cannot solve the

proposed problem, try td solve first some related problem." In the problem

of Section 1-1 concerning the shipping of books, a "related problem" is con--
sidered when we switch our unfocused interest in the problem of finding the a

'dimensions of a box with maximum capacity to the specific related problem of

determining properties of the function f given by

f(x) = V = x2(72 - 4x) .

A final relatedproblem.is considered when looking for the point of the graph

of this function at which the slope is zero.

What are the related problems in (a) Ex. 1-1, number 5?

*(c) Ex.-1-1, n ber 8?.
(b) EX.. 1-1, number 7?

(d) Ex. 1-1, number 10?
(e) Ex. 1-2, number 1?

Polya, G., HoW To Solve It, 2nd ed.,New York: Doubleday, 1956; p. 10:

t-



Chapter 2

"TEE IDEA ,OF DERIVATIVE

A

2-1. Introduction,

4

a

Although intuitive geometrical thinking may serve as a'guide to the

creation of .a mathematicial'concept or proof, it is not always reliable. There

ii the danger of reading properties of a picture into a precisely formulated

mathematical:concept:when those properties cannot be /ogically derived.

2-1

Example. Consider the function f ,.defined by

/,
The graph of f is -exhibited in Figure 2-1 in three different scales where

x > 1-

f ( x ) x= x , -1 < < 1

-1 , x < -1

the:unit is

. (a) 1 inch,

(b) inch,

(c). 10
6

inch.

TheNKsiope of the graph of f at x ='0 rust certainly de defined as the

slope of -1-he line given by "y= x ;'.thus-the slope at -x.= 0 is. 1 . Yet

in Figure 2-1c the graph of -f is not perceptibly distinguishable from the

x-axis, which has 'the ,lope 0 .

Ile
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If, as in this example, an accident such as a particularly unfortunate

choice of scale can obscure exactly those features which we are trying tc

explore, it makes sense to try to put our'ideas in a form which enables us to

reach conviction by precise logical argument rather than by'appeal to our

fallible perceptions. For this reason, without rejecting geometrical intui-

tion as a guide in directing our thoughts, we shall express our concepts

analytically in terms of number and take numerical concepts as the basis of

proof in all that follows.

The treatment of the parcel post problem in Section 1-1 shows in a par-

ticular case how the geometrical concept of direction for a

a precise analytical interpretation in terms

at a given point is a local property in the

determined by any arc containing the point,

of slope.. The

curve

slope

can be given

of a curve

sense that it is completely

no matter how small. For the pur-

pose of describing such a local property, the idea of limit is especially

appropriate. The slope of a curve at a point is defined as the limit of a set

of slopes of chords to .the curve. In this c.e.-upter we shall introduce this

limit in terms of a purely analytical concept,;the derivative of a function at

a point. The analytical concept, divorced its geometric interpretation

as slope, will be seen to have other realizatiohs: Next, for some simple

examples we shall see how to compute such limits, but we shall not treat the

general computational problem uratifwe

of limit (ChAter 3), (!'''

It should not be thought that the methods. of geometry are entirely power-

less in the present context. The ancient Greeks treated the problem-of

defining the direction of a curve at.a point by finding the tangent line at

V'

have developed a clearer understanding

the point, the tangent being the line through the point which has the direction

of the curve there. They were able to construct the tangents to all the-conic ,

sections (circle, parabola, ellipse, hyperbola) and even to such complicated

curves as the spiral of Archimedes. In the end, though, the. Greeks were

_unable to solve the problem of drawing tangents to more than a limited class

of curves whose special geometrical properties made the problem tractable;

What limited them was the fact that they'had no general way of defining a

curve, say, in terms of functions; that had to wait until the-'invention of

analytic ge4metry by Descartes. r

29



2-2

2-2. Slope.

The idea of slope for a curve at one of its points is a generaliiation of
the idea of slope for a straight line. In coordinate-geometry, the direction
angle or angle of inclination of a straight line is defined as the angle
measured in the counterclockwise sense from any horizontal line given by
y = constant. (Figure 2-2a.) Although direction angle is the more. intuitive
geometric concept,.it is simpler analytically to work with the, concept of
slope, the tangent .of the direction angle. For a straight line th(rslope m
is defined by any two of its distinct points

-7"12 3.71m
x
2

- x
1

'

and (x2,y2), namely

where the value m given by this formula is independent of the choice of the
two points and also of the order in which they are given. We remind you that
the slope defines the direction angle unambiguously, and therefore serves
adequately as a numerical characterization of the angle.

Figure 2-2a

x

Figure 2-2b,

For a curve that is not a straight line the,direction angle charges From
point to point (Figure 2-2b), anl. we must define this angle, and therefore
the slope, separately at each point. ,We suppose that an arc of the curve
containing the point is the graph of a function f . Following the'idea of ,

the example in Section 1-1, we expect the slope of the graph at the point
(a,b), where b = f(a) , to be approximated by the slopes of chords joining
(a,b) to nearby points '(x,y) on the graph, vitere y = f(x) Figure 2-2c).
If these chordal slopes are adequate approximations to a single number, m ,

in the sense that it is possible to make the error in the approximation smeller
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than.. any prescribed tolerance by a choice of x sufficiently near to a ,

then we accept m as the slope of the curve at the point (a,b) . In other
words, we define the slope at (a,b) as the limit of the set of 6proximations_

furnished by the slopes of chords to nearby points.

Figure 2-2c

-cv

To see how this idea of approximiLtion works- in practice, let us try it
for the simpldst nonlinear' graph we know, the curve with equation y. = x

2
,

at the poin, (1,1) --For the choird joining the points (1,Z) and (x,y) ,

we calculate the slope

r(x) = Y
x -

for a number of values of x _taken successively closer to and obtain the
table

x 1.1 t,.99 1.001 0.9999-, 1.0)o001

r(x) 2.1 1.99 2.001 1.9999 2.000001

.From this table it is hard to-escape the conclusion that the values of r(x)
are successively closer to 2 and ttat the error of approximation remains

within any prescribed tolerance if 'x is close enough to 1 . We may well
believe that the slope- m of the curve with equation y = x2 , at the point
-(1,1) ,-is M = 2.

Belief on the basis of a critical appraisal of the evidence is an excel-
lent way to find the correct approach to a mathematical question; but no mathe-

matical investigation is complete until the belief is substantiated by

O



tive, logical proof. To prove that the slope is actually 2 we'must show

that the error in approximating 2 by the slope r(x) of the chord joining

(1,1) to (x,y) can be controllea by a Choice of x ,sufficiently close to

1 . In numerical terms, the error in approximating 2 by tie slope_ r(x)

is 1r(x) - 21, and for any prescribed tolerance ,e > 0 we must be able to

ensure that

(1)

N
Ir(x) - 21 < e

If the distance between x and 1 is small enough. We have

r(x) x2
x 1

-
x - 1

x- 1
(x + 1) .

x - 1

The distance between x and 1 is defined as the absolute
value. of their differences, namely Ix 7 11 = 11 - xl. See
Appendix 1-3.

We stress she fact that r(x) has no meaning when x = 1 ; when- x = 1 , the

denominator of the expression for r(x) is zero. However, since r(x) is

defined as the slope -of a chord, the value x'.= 1 is excluded from the domain
x -of r . in,..4.hat domain the ratio
(x

1
1) which appears in the last expres-

sion for ,r(x) is constant and has the Value l', so that

It follows that

fir(
AI

r(x) = x + 1

) - 21 - 11

We see at once that by taking the distance between x -and. 1 smaller than

we can guarantee that the inequality (1) holds.
7-

Because we wished to exhibit clearly the-Procedure for verifying that a

given value m is the slope-6f-the graph of f- at one of. its points, we

have kept the,precgding example-very simple. In certain respects it is too

simple. In the first place, we assumed that the curve had a slope m , i.e.,

that the slopes of the chords_had a definite limit. Then we were able to

isfy ourselves that such a limit exists by actually exhibiting its value

m = 2 d showing that it is, in fact, the limit of the slopes of chords. In

general, t rocedure poses a second difficulty; we must_find the numerical

value of the slop before we can prove that it is the appropriate limit. Allbw

4 0 32
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does one find this valuefora less impje function? Certainly the idea of

discovering the value by inspect' lisble of approximations is-notalways
5)-v-spractical, as-we may see from Ekerci caopelow.

Finally, the choice of the point (1,1) is too-special for our purposes.

It will be better to estigate the Slope of
.

,the curve y = x2.
,at any point

(a,b) 'here b = a2 without specification of -a . For the slope' -r(x) of

the chord joining (a,b) to another point (x,y) 0:_f the graph we have

2 2
fr(x) = LLLbx- a - x a x + a)x -a x-a x-a'

where, of course, x a . -As before, the chordal slope r(x) is defined for
-all real x except x = a , am& so-we have, on the domain of r,

x
-

a
-

-4.,
1

x a
-and

(2) r(x) = x. + a .

We want to find the limitlpf. r(x) for values of x close to a , and it

seems perfectly clear that this limit is .a + a = '2a . In fact, if we accept

2a tentatively as the slope m of the graph 'at- (a,b) , and set a tolerance

of error 'e , we can easily enfoice the condition lr(x) 2a1 < e , for we

have

Ir(x) 2a1.= 1(x + 'a) - 2a1 - al .

We see that the error of approximation can be kept within the tolerance e if

we choose x_so that 0 < lx.- al < e . In words,.we choose x. at a dis-

tance less than e from a , but we must exclude the choice x = a because

it defines no member 'of the set of approximations--the values of r(x). We

ara'sure now,"not only that the curve y = x2 has a definite'slope m for
x .'a , but that we have also folind its.valtle, namely m = 2a.

In reviewing- the argument justmpleted, we-observe that 2) defines

as a linear function except at the one value x = a . The graph of r is
thus a straight line with the one pint (a, 2a), .deleted- It is intuitively

reasonable to' take '2a as the slope of y = x2 at x = a . However, we

reject intuition as our-sole criterion, especially after considering examples

like that of Figure 2-1. We insist on supporting our intuition with firm
w

mathematical argument: we have verified that the value of the slope obtained

on intuitlite grounds agrees with the mathematical limit determinedianalyti-

caIly. ,

rl
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In addition to the need for logical conviction, there is a more compel-
.

ling reason forpursuing.our argument in such detail. We wish to employ

methods that are general, applicable to any function f and not merely to the

'very. special case' we have examined. In general, we may attempt to evaluate

the slope of the graph of f at (a,b) , where' b =f(a) asthe limit of

the slopes

(3) 7' .0

T.: A. -

y - b f(x) f(a)
x a x - a

of chords joining (a,b) to nearby points (x,y) 'of the graph. (Again we

observe that r(x) is not defined at x ='a .) Without knowing the function

f explicitly; we cannot tell whether it is possible to proceed as before to

obtain a simple expression for. r(x) , valid on its-domain, which will enable

us to Ovaluate'the slope. In fact, we shall give an example in Section 2-5

where such a simplification is impossible. For this reason, a treatment of

slope as a limit must use the kind of argument that we have given:*

I



JExercises 2-2

2-2

1. lind the slope of. 'y = x2"7:1 at the point (3,8) by constructing

-a table of values of r(x) for x successively closer to 3 . Verify

that your answer is the limit of the slopes of the chords.

2. For the functioh given by f(x) = x2 - x + 1 , tabulate the slopes of the

chords joiriing (7 ; f(7) to (x , f(x)) for X = + 1
7 10 / ( 10 ,

5 1 5 1 5 1 5 1 etc. as far as your time
7 100 ' 7 100 2 7 l000 ' 7 1000 '

, ,

energies, and inclinations permit. Can you predict the limit of the

approximations from an.inspection of the table?

3. .Each of thefollowdpg curves pasSes through the origin,

(a) y := 'f(x) = x1/3

(b) y = f(x)L x2/3

(P) Y =
For each curve construct a,table listing the slopes of chords With one

")endpoint at the' origin and the other et- nearby points, x, f
these points are taken succesS.i'vely closer to the origin (e.g.,' Ix! <

Ix < 0.01), .what information do you obtain_about:theslot)e of the curve?

In your oPinion'', is 1t pOssible to define the slope of. the graph at the.

origin? If so, what is.the :slope?.'Ifnot,.justify your answer.

4. (a) At each-of the_ acidnt.p...(I,7)- (2,16) the slope of
2y g(x) = 3x + 4 by-conStructing 6 table of values; then-verify

that your ahSWer.is the limit of the - slopes of4 chards.

(b) Find the slope of.. y = g.(x) at the point (a,b) on'iis graph,

where b = g(a) .

(c) Find the lowest point on the graph of g by methods of coordinate

geometry. .

(d) Check your answer to (c) by using the result of (b). (If a hint is

needed, one may be found in Section I-1.)

5. (a) Find the slope of y...tvx3 at (a,b) where b = a3. -(If a hint for

the simplification of r(x) is needed; one °may be foulld in Section"

1-1.)

(b) Is there any lowest point on the graph of y = x3 ? Is there any

highest point? Is there any point where the_graph is horizontal?

35



2-2 y.
6., What is the relationship_between the slopes of the function in EX. 5,,.

corresponding to the points x = a and x = -a ?, Interpret this i'estilt
graphically. Give examples of other functions having this property.

7. What is tie relationship between the

corresponding to the points, x = a

graphically. Give examples of other

8 (a)

slopes of the function in Ex. 4

and x = -a ? Interpret this result

functions having this property.

Find the slOpe of the graph of h - 3x2 at (a,b)
where _b = h(a) .

(b). Find all points where the graph of h is horizontal. Can you
characterize these points as "highest" or "lowest," perhaps in a 7

restricted sense?

36 F.



2.3.. General Quaaratic Function.

$40w apply the procedure, of the last section to the class of all

_quadratic functionsonsider

x Ax2 + Bx + C

where A , C. are constants and A / 0 . Whpn x
passes through the'point (a,b) with b = Aa2 + Ba +

2-3

a the graph.of f

C , and we propose to

calculate its slope there. Again we shall prove-our result to be correct by

showing that it is trulythe limit of the approximations that define it,

naMely the slopes

r( ) -
f(x) - f(a)

x - a

of chords through '(a, f(a)) and (x, f(x)) , with

_quadratic function we obtain

Ct.

. For the gen ral

r(x) Ax2 + Bx c _ (Aa2 + + B(x
x - a . x

When. x /
2F-8.A(x + a)

point (a,b)

tolerance e

x - a
x- a [A(x + a) + (x / a

the function r coincides with the simple linear function

+ B As before, we immediately guess that the slope at the

must be m = 2Aa +. B. We verify ,this guess by prescribing a

and showing that the error .of our approximations can be brought.

within the tolerance. Fox' x sufficiently near to a the error in the'

approximation is 1r(x) ml , namely .

+ a) + B (2Aa + B) I = IA(xIA(x

In order to bring this error within the tolerance- e

a)I
a..

, we see that we boast

make a choice of allowable values of x depending on the coefficient A ,of

the quadratic function. To ensure thiat we stay within the tolerance, that

< c , we must restrict x to values for whichIr(x) -.ml

so that

(x) ml = IA(x

lx al <

a)I = 1-41 x aI < IAI TIT < E -

We have proved that our calculation of m gave als the correct slope--the

37
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limit of the chordal, slopes.

Example 2-3.- Consider the parabola given by y = 22:
5x2 + x +
2 '

-wher7/ A = , B = 1 , and C = . The lowest point on this graph may be
fo algebraically from the standard form (x + 1)2 = 2(y - 2) of the equa-
tio of the curve; it is the vertex (-1,2) . Alternatively, using the idea

-in roduced in the best -value'problem in Section 1-1, we may find the lowest

point directly as-a point of zero slope. The slope at (a,b) is
1m.= 2a + I. a + 1 , and it is zero for a = -1 , where b = f(-1) = 2

(Note, however, that we do not as yet have'a way to prove by the calculus that

this is the lowest point; but the standard form does show that, y cannot go
below 2 on the graph.)

38



/Exercises.2-3

1. Find the slope for x = a of the general linear function f : + B

(where A and B are any constants except that A ( 0) and compare your

result to that obtained from the_standard slope-intercept form of the

equation of a straight line in coordinate geometry.

2. For what values of k does the line y = k intersect the parabola

t
y = Ax2 + Bx + C

in

(a) no points?

(b) 1 point?

(c) 2 points?

(d) What is the lowest or highest point of the given parabola?

(a) Find the highest point on the graph of

g(x) = 5 - 6x - x2

(A 51 o)

using EX. 2.

(b) EXplain geometrically why the point in (a) can also be obtained by

finding where the slope of .g(x) is zero.

4., (a) What is the greatest possible number of points where the graph of a

quadratic funOtion Ax2 + Bx + C may be horizontal? -

(b) Is it possible for the graph to be horizontal at less than the maxi-

mum number of points, or nowhere horizontal? If the answ*to either

question is affirmative, give an example (in the form of a specific

function).

5. (a) Given Y= f(x) = 20k 3x2.' Find the slope of the curve'at the

point (a,b) , where b-= f(a) .

(b) -Where is the slope zero? How can you use this Information in plot-.

ting the graph of f ?

6. (a) Find the slope of the curve with equation- y = h(x) =

Ax3 + Bx2 Cx + D (the graph of the general cubic function) at
:

(a,b) ..where b = h(a) ; here A , B', C,, D are any constants,

except that A / 0 (If you need a hint for the Simplification of

r(x)-i it may be found'in Section 1-1.-)

(b), What is the.greatest possible number of points Where the. graph of a

- cubic function h may be horizontal?
a

-39
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(c). Is it possible for a cubic function to have its graph horiZontal at

less thaa100Pu=lmum.number of points? If the anzwer..is "Yes,"

give an example of such a function.

(d) Is it possible for a cubic function to have its graph nowhere hori-
zontal? If the, answer is ."Yes," give an example of such a function.

Show that the curve of Mc. 6 is centrosymmetric about the point

h(-
3A 3-A

Centrosymmetric means that given

the above point as a center, a line

segment starting at an ether point

on the curve going through the center

and extended will intersect the curve

again so that the center is the mid-

point of this segment.

PC = Cs 'and

RC = CS .

A function h is defined by the formulas

xr3 , x <1
h(x) {

-x 2x , x >1

Vind theslope of the graph-of h for x < 1 and,for x >1 . Is it
possible in'your-opinioia to define a slope for the .graph at- ? Give
an argument to-support your answer. (A sketch may be helpftl in answering
the question.).

Until now our discussion of the idea of direction and slope for a curve
has been generally at a theoretical level. Although we know from Section
S1 ..1 that the concept of.slope will ultimately be useful inktest-value"
problems it is satisfying to have another more'immediate application. You
are probably familiar with the fact that large telescopes and automobile
hepAll,ghts use parabolic mirrors. A parabolic _reflector can bring a bundle

*of parallel- rays like_tito'se from asstar to a sharp focUs. YOU are now
Able to -demonstrate the.sharP focusing .property of the parabola.

* -

At' stellar distrances the deviation from parallelism of all rays reaching
the earth from a given star is utterly negligible.
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According to Heron's. law of ref/ection"for.a ray of light incident

upon .a th.mirror the incident ray and the reflectedray-make equal

8.13 es th the mirror. Suppose the shape of the cross section through

the axis of'the mirror is given by the graph of y =x2-. Prove for all

incident rays parallel to the y-axis that the reflected rays have a common

point of intersection as in the figure. This common point is called the

focus of -he'parabOla. It can also be shown that this property character-
,

izes the parabola; i.e., if the curve is. such that all parallel rays pass

through a common point after reflection, then the curve must be a parabola.

I
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2-4. Velocity.

The kind of limit which is used to define the concept. of slope is appro-
priatefor otherTurposes. Now we'shall see how it m*- be used to describe
how rapidly an object is moving at a particular instant.

As a means of getting at this concept we compare the distance moved
during a given time interval to the time elapsed;- we introduce the average
velocity: if the object is at a distance s1 along its path at time t1
and a distance s

2 along Its path at time t2 , then the average velocity
is the rate or ratio (s

2
- s

1
)/(t

2
- t1) . Unfortunately, the average

velocity tells us very little about the comparison of distance to time o'er
any specific smaller time interval of the motion, Or at any particular instant:
knowledge that a motor trip was Completed at an average velocity of 50 miles
per hour gives no indication of the maximum~ peed or whether there were any
stops.

We describe the course of the motion by measuring the distance s along
the path from some reference .point s = 0 , setting a clock to the time t = 0
at some convenient instant of'the.motion (say its start), and

.the location of the object at time t by'a function given byi

Since a-difference of values of s may be either positive or
distance between two locations s

1
and s

2
is Is

2.

s
2

- s
1 -indicates both the distance and direction of

then expressing

s = 0(t) .

negative, the

Z
1
1". The difference .

s
2
from s

1
EXamble 2-4a. A certain motion is described, from. the time t = 5 until

the time t . 8 , by the equation s = 0(t)'.= 2to 9t2 + 252t - 535

The distance measurements s in a motion of this sort may be graphed
a single straight line, an z-axis, and for this reason we simplify .our
sion by talking as though the motion actually took place on a straight ine,
although the path of the motion' may make many turns, go up and dOwn hi la,
etc. The moving object, which may, for example, be a large automobile,} is

-... -

represented as a single geometric point on the s -axis.
t- -

We need :a concept similar to average velocity but valid for a p se
instant, t = t0 ; by way of distinction, we call it the instantaneous velocity,
or simply the'velocity. Once again we have introduced a concept which cannot
be defined exactly without methods of the calculus. We try to,approximate the
instantaneous velocity at time t

0 for a motion described by s = 0(t) . We
take the average velocity over a time interval between the time to and
another;time t of the motion, that is



0(t) - 0(t0)

t.- to

If -these approximations have a limit, this limit is the velocity,at time to

of the motion described by s = 0(t) . That is, we shall define'the velocity

to be"the number to whiCh-this ratio approximates within any prescribed error

tolerance c ,for values of t sufficiently near to to .

Example 2-4b. For; the motion of EXample 2-4a a calculation similar to

that of Section 2-2 yields the velocity 6t
2

- '78t + 252 .(proof-left as an

exercise). At the time tfi)5.5 , for instance, the instantaneous velocity is

4.5 (distance uniterper time=unit): This positive number cannot possibly be

approximated within a. small tolerance by negative average velocities; therefore

over any sufficiently small time interval containing. t = 5.5 , the average

velocity was positive, so that a distance in the positive direction of motion

was covered, during the time. It follows that. the motion at t = 5.5 was in

the forward direction.

We see that the velocity helps us to answer such questions as: when

the object moving in the direction'of increasing s , when in the directior_ of

decreasing s ? When is the object, at least momentarily, standing still kaz

it must do, for example, at an instant when it is 'reversing direction) ?.

To check for reversals of the motion; we factor the.expression. for the

velocity: 6(t - 6)(t - 7) . We discover that the velocity was zero at times

t = 6 ,and t = 7 , but at no other times during the motion. The corresponding

locations are s -0(6) = 5 and s = 0(7) = 4 . This is possible only if the

motion during the time interval 6 < t <'7 was in the direction of decreasing'

s , and the velocity -1.5 obtained for t.= 6.5 checks this assertion. The

motion ended at time t = 8 , and the final location vas s = 0(8) = 9 . This

is possible only if the point s 5 was reared twice during the motion.

Maw does this conclusion follow?)

lb

We tabulate our findings: -Z447

Time 5.0 5.5 6.0 6.5 7.o' 7.5 8.o

Location 5.0 4.0 9.0

Velocity 4.5
,

0.0 -.1.5 o.o
. .
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As the example suggests, the velocity is positive at a time when the./`

motion is in the positive direction and negative at a time when the motion is
...,In the negative direction. At each instant when the direction-of motion

reverses, the velocity must necessarily be zero, but it may also be zero-during i
a motion that never goes backward (see Ekercises 2-4, No. 7 below).

.The representation --s" = 0(t) of potion on a sti-night line has
-a somewhat different character from the representation y =2f(x) of
the graph of a function ..f in a'plane with coordinates xiand y
In the representation of a graph; the coordinates x and y from

,,..,thegeometrical point of view assume equal importance, and are
-,..,essentielly equivalent. In the representation s = 0(t) of a -,1

motion, the quantity t assumes the role,. not of a. coordinate
equivalent to s , but of a paraineter, a secondary mathematical ,
quantityin terms of which the primary clilan tity, the distance
s is expre ed. Look carefully at the contrast between coordi-nate and parametric representation as employed on a single .axis,
an x -axis or s-axis. in the former, a-point P is specified. by
a number x which directly pinpoints the locatioit of P' on the
:line, In the latter, aLlocation*Q_ is sOecifiedloy.enber t .-

lotaving no direct geometrical signfilicance The" quantity of geo-
petril significance is the numioer-0(t) the value at t of lithe
parametric function 0 , and'it reveals the location s , Thie4
advantage' here is that a description such as that of Example 2-4a
yells us not merely the location of the moving objects but also
the specific time at which it occupied the stated location. The.
description s = 5 would not distinguish betWeen the two times
when the.moving otject passed through this location, but .t = 6-
preciselg- describes the first time, -and t = 7.5 the second time.

. .

Parametric representation has many other applications;' the
parameter may in.another context represent distance, or tempera-
ture-, or heat, or fluid speed. As will be seen in Chapter 11,
the parametric representation of a curve in the plane may be-far
simpler than its coordinate representation in terms'of x and
y , and enables us to study motion on plane curves in a much more
efficient way.

et
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Ekercises 2-4

A
1. It us-assume that a pellet isprojected straight up and after a while-

comei straight down via the same vertical path to the place. on the gr6Und

from Which it was launched. After t seconds the pellet is a feeteabove

Some of the ordered pairs (t,$) are given in the folIaMingthe ground.

table..

t - o 1 2 3 6 7 .8
., 9 lo

s o 144 256 336 400 .384 I 336 o

We shall intentionally avoid cei-tain physical considerations such as

air resistance. Moreover, we shall deal with'simple numbers rathei- than

quantities measured to some prescribed degree' of accuracy which might_

arise from the -data of an actual projectile problem in engineering.

(a) Interpolate from the data given to determine the height of the-pro-
-

jectile after eight and. ;line seconds respectively: (Guess, using

symmetry as your guide.) Does extrapolation to find values of 'a'

for. t.. -1 or t = 11 make sense on physical grounds? After how
A

many seconds does the projectile appear to have reached its maximum

height?4.'What seems to be the maximum height?

(b) Does. s appear to be a function of t ? If so, discuss the domain

and range, taking physical Considerations into account.

(c). If we were to plot a graph of s..5 = f(t)

(1) is it plausible on physical grounds to restrict our graph,to'

the first quadrant?

(2) roes the data suggest that the scale on the s-axis (vertical)

should .be the same as the scale on the .t-axis (horizontal)?

Keeping in mind your responses to part (c), plotethe ordered pairs

(t,$) from the table. Connect the poiii.ts witlia smooth curve. What

is the name of thesfUnction suggested by the graph? On physical,

grounds is it feasible.that there wou/d be a real value of s for

every real number assigned to t over the interval 0 < t < 10 ?

Were we probably justified in connecting the-points?

(e), Assuming ,that. the equation s = f(t) = At
2

--E. Bt C was used'to
.

develop the entries in our table, find values for constants A

and C .
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(r)

(g)

fi

(h)

4

(i)

(i)

3

Sk tell-the graph given by, the equation s ..160t -:-16t2 over the
interval 0 < t.< 10 . Using,e more carefully plotted graph of the
above set, connect the point where t = 1,.with the point where'
t ..2 with a chord. What is.the slope of this chord? Estimate the
slope of the curve at t = 1 and t = 2'.

If the. units of s are feet. and the -units of t are seconds, what
are the units of slope? What word is commonly` associated with this
ratio of units? What would you guess -are the physical interpreta,
tions of-positive, zero, and negative values of this ratio?

Draw the graph of v 32t over the interval 0 < t < 10
Compare- the values of v for t = 1 and t ..2 respectively with
your estimate for the slopes of the graph of $ = 160t_f-.26t2 in
part (f).

Average the -values of v---ffor t .,1 .and t = 2 and compare thiS
average with the slope of the chord connecting' the points where
t = 1 and -t . 2 in part (f).

If the units'of' v areft.fsec. and the units of -t are seconds,
what are the units of the slope-of the line v = 160 32t?' What
word fromphysics-is. Commonly associated with this ratia-OfunitS?.
Doe' the minus sign alOng with the particularInuttterical.valne of this
slope ye-any special_ connotation. from your:eXperience?

2. (a) Derive t h e -velocity functian,tfor.the
motion as given in 'ticample 2-4a.

://(b) Sketch the graph.of is . 0(t) ,.(calledthe world line) and-the
v vs. t curve (i.e., the graph of the velocity as a function of
time).

(c) ComRarethe times when equals a maximum or a minimum andi.rhen the
velocity v = 0 . Explain this phydically

(d) GiveA only that -0(6) = 5 for the function 0 that describes the
motion, show that there is a second time t when 0(t) = 5 , and
find that value of t . (This is not done by calaulus;)

sr

'(e) Find the time'of greatest,speed between t = 6 and t = 7 .
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Find the veldcity of an object whose location along a straight line is

-described by the equation s = 128t - 16t2 .. -,,,Sketch the curves of

sys.'t and v vs. t on the same set of. axes.

(a) Miring -what time interval gr intervals is the dbject moving toward
= the location s = 0 ?

(b) what are the values of v 'and t when s ieS'e. maximum ?

velocity of 32 'feet per second. Its4. A ball lb thrown upward with"<t.

height h in feet after t -seconds is described by the equation

h = 32t - .16t2 .

(a) - What is the velock.of the ball

feet? When it again reaches 12

when its-height first-reaches

feet?

12

y
(b) How high does it go, and at what time does the ball reach its highest

position?

5. An object isprojected up a smooth inclined. plane in a straight line. Its
distance s in feet from the starting point after t seconds is des-.,

cribed by the equation s = 64t - 8t2 .- After the object reaches its _

,4 .

highest point it slides back along its original path, to the startl9g point
acArdIng to the equation T = 8(t - t:i.) 2 . Here s is the diEstance of'"1

....

.the object from the highest point and to is the time it took the object

to' -reach the highest point.

(a) Determine how long it took for the object -to make the up and down

trip.

(b) Sketci the s

coordinates. DO likewise for the v vs, t curve.

e.

VS. t curve for the up and down imokion using one set of

--
. The location of an object .,on, a straight line is given by the formula

2 5' -'-s = pt + qt'+ r , where -p ,:q , and r are,real constants. -Find-all

instants of time when the object is at rest,2ithe show how'the number of

such Inas-zits depends on the constants- p , q , and r -.-
- .
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V
7-- For any but

location at

formula for

the very simplest motions, the function. 0 describing the

time t is unlikely to be expressible in terms of a single
1 .

the entire duration of the motion. Here is a more plausible

description of a motion:

-t2

2"

1

fat.. 95(t) =

-t2 7t 29
2 2 -8-

t2- 12t+ "7,
2

0 < t < 1 ;

1 <, t < ;

1 3

< t <7
2

<t < 6 ;

6 < t < 8 ;

14.(t - 7)-1 , 8 < t < 10 .

(a) Compute. the function 't) that describes the velocity of the nOtion

with locati.= -s =
t)

) It =s aimed that s = 0(-: and v = *(t) are functions. libtat has

to -.7:e checked to Verify thiz?' Does it check? ShowAthe graph of each
-r-

of 7._hese funct.f.ons -7.1n the same rakes.
4.1

)..During time Lntervals an you think the speed of the motion

'increas:..-Ig ?. decreasing?

(d) Does-the:db,,--t-spend zu.ly time between t = t = 10 standing

'Does it have any other instants of zero velocity during :pike

motion?

4,
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2-5. Derivative of a Function at a Point.

Slope and velocity are two concepts with seemingly unrelated origins in

geometry and physics; yet we haye obtained each in the same way as a limit.

This sort of limit is one of the most important ideas of mathematics, and also:

appears in countless 'guises in the sciences, in technology, and in the social,
sciences. We abstract from the ideas; of velocity and slope a general analyti-
cal concept- -the derivative of a function at a point--and frame this concept

in a purely numerical way, independently of the problems from which it arises.

Let a be a value of x in the domain of a function f . We say-that
m is the derivative of f at a if, by taking x 'sufficiently near to a

f (X) f(a)we can approximate m by., the ratio with an error lless- than any;x.- a
prescribed tolerance. We briefly describe this situation by sayiiig that m

- fis the limit of
f (x)

- a
(a)

as x, approaches, a ,rand symbolically we
--

'write 1

m f(x) - f(a)lim
x a

(

. , .

f( )
11
fa) 't,N*(Read: "EL is the limit as x, approaches a of )

- x - a
, .

The procedure/ of co ting a derivative is called, differentiation, and if f
f./ - -has a derivative at .91 -;:if the limit exists--then We say, that is 14.

1

differentiab/e at a. :

- . The preceding description gives no prescription for differentiating any
partiCtilar function at any particular point. In fact, no universal technique

for _finding derivatives exists, althoUgh with the assistance of the-general

methods of operation with limits to be developed in the 'next chapter we shall

be able to differentiate ,many of the functionS of greatest interest. For- the

present we try to pursue a little further the 'technique which nables us to
find the derivatives of simple polynomial funetions in Sections 2-2 :and. 2-3.

f(x) - f(a)Look again at the ratio r(x) _
x - a . No matter what function

f appears in,:the numerator, the denominator forbids us to evaluate 'r at
X = a . In each previous example we have0* avoided this difficulty by finding

cl-fr

The ratio f(x) - f(a)
is often thought of as the ratio of thex - a

`'nchange" in the_ values to f , to the "change" in the values of the indepen-
z.

'dent variable, and is referred to as the "average rate of change" of f(x).
The limit m is then called the "rate of change" of f(x) at x a

1,

5
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a simple formula for a function which had the same ,values as' r for x / a

but which was also defined for x = a . Thus for f(x) = x2 we found

r(x) -

or

x2-- -a 2

x - a
41r--- a)

T377717

r(x) = x a for x a

This formula suggests that the limit of r(x) for x approaching a is

m = 2a .

In finding tbe value of m , the crucial step was the representation of

the numerator of r(x) as a product containing the factor- (x - a) With

the help of algebraic techniques it is possible to find the derivatives of a

number of simple fUnctions in this way.

Ek 1ample 2-5a. Consider the fUnction g defined by g(x) , whose

derivative we wish to find at x = a . As yet, we cannot even guarantee the
A

existence of a derivative without further investigation (see, for instance,

E iercpses No. 8) ,. For ,the 'function g we have

-1 1

r(x) - g( ) g(a)
x a -x a 1

x" - -a x- a ax(x - a) 77-7,77:1. '

or'

r(x)
1

- ,ax for x a.

.A.. Our natural guess fore the derivative at 1-is m = - -12L, To test our gueds
. . a .

we should set a tolerance. E >0 , and check that the error-in the approxima-
.

tion-of- m by r(x). remains .within that tolerance for x suffidiently.close

to a . That is, we should show that for such x we have

8.2 a
2x

a
2124'

ircx) - ml .1r(x) + -1- al al < e (x "" a) . 7

The situation is not qUite so simple as before. Tde-error is still a multiple

of Ix - al ,,but the multiplier depends onjboth a and!' x ; and we must ,

keep x away from" 0 .. Algebraic techniques for completing the verification

are developed in Section 3-3. You -are encouraged to try to complete it your-

self (Exercises 275, No. 9a): We repeat our result: the derivative at x -= a
1of g 1 is m= - .

a



Example 2-5b.

with the aid
1

h : =

In order

numerator .

2-5

Another function whose derivative at a can be obtained

of elementary algebra is the-ware root function

15Z . For our approximations'to the derivative n we find now

r(x)
h(x) - h(a) -AZ - va

_ a a '

to obtain the factor (x - a) in the numerator, we rationalize

r(x) - (x - a) 1

(x - a)- /5c + 1/71.(x - a)(-1/ + la)

the

The-value of r(x) la -for / a , and .m = 1 is our guess
va -2,/a

for the derivative of h at x = a . The proof that this is the limit is

similar to the verification for the preceding function, and is also left for

later.,(gee Exercises 2-5, No. 9b and SectiOri 3-3). 'Forthe present we accept

the result that the derivative at x = a of h is
1

Example 2-5C- Before you reach the:wrong conclusi .tha -t all derivativeb:

Msy-be.Obtained with nothing more thar.. simple algebra, take, a careful look at

the .sine function, k x . While the domain .of the sine function

consists of all real x , for simplicity we shall attempt to compute the

derivative only at x = a = 0 . We then need to find the limit as x

approaches 0 of the ratio

k(x) -. k(0) sin x - sin 0 sin x
k - 0 x - 0

How. can we divide the trigonometric function sj.. by the linear polynomial

x ? The answer, unfortunately for our attempt to differentiate sin -x is

that there is no method of algebra or trigonometry that enables us to.carry

out such a division. No triciuwill help, and we are .forced. to take.a quite

different route in order''to find 'the derivative,- _After-a more detailed study

of limits, and the application of this study to a' more Systematic calculation
5 -

of the derivatives.oX algebraic functions, we shall return to this problem

and solve it.

51
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Exercises 2-5

1. Find the derivative of f at a for f : x --sr(x), , where f(x) equals
each 'of the following.

(b) Ax
1

B where A and B are constants, A 0+ .

2. For each of the functions of Exercise 1, and also for the functions
g(x) and h(x) = of the text; list the following: the domain
of the function; all points of horizontal slope (if any); the highest

point on the graph 'of -the fUnction (if any); the lowest point on the
graph of the function (if any).

Use the definition of. derivative to differentiate f at both
and a = 2 if f(x) equals

(a) (x - 2)2

x
(b)

1 4-
1 -

( c ) 3x - x3
(d) x2 x -

=

1+. For each of the functions f whose values f(x) are described. below,

find the derivative at a ,- where a is in the domain of the function.,

(a) 5x - x (a) ax
x + 1

,4)

(b) 3 - Z, - x2 (e)
2

(c) x3 - 2x .

(f).
X2 + X . ..

x2 - 1

:
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By the methods of this section find the slope of the graph of each of the

following functions at the point (1,1) .

(a) f x X3

1

(b) g :

What is the relationship between the two answers? Explain this relation-.

°ship.

6. Use a table of sines to obtain approximations to the limit of sin x
as

x approaches a = 0 , and make a 'conjecture as to the value of this limit.
xsix n

What can you conclude about the slope graphof the aph of .y = at the

origin?

Write the derivative of the cosine function at x = a as a limit, for

a . 0- and a = and show what limits must be evaluated before the

derivative 'can be obtained.

8. In Chapter 8 we. shall define a function f x----1.2x in such a way as to

have all real numbers x in its domain, and also,.to satisfy- all the

faMiliar laws of exponents valid for 2n when ,n is a rational number.

Compute the ratios r(x) that serve--to approximate the derivative of f

at x = a 0 , and' show - what limit problem, must be solved before we can

differehtiate the function.

. Prove that the derivative at x = a of

(a) g is

CO h.: x is

1
2a

.

10. Find the slopes (if they exist) of :the fc.7,11cwing.curves at points for

Which y :

(a) x + y = A.

(b x:y -1- y = 3A

(c) A.2

(d) YI 4 1 x YI = 2A

(e) Check your answers by sketching each of the aboire,curves.

--If) Generalize the results of'parts a - d.



Chapter 3

LIMITS AN",--eozprnmsty

3-1. Introduction.

The derivative is a Special example of a.basic general concept:

limit of a function at a point. The concept of limit is also cloSely

to-the important idea of continuous function which is taken up in the
Sections of this chapter..

In simple-cases, a judicious. guess may help us

apparent need for deductive reasoning. As we widen

and try to solve more complicated problems with the

3-3-

the

related

later

find limits without

our mathematical horizons

calculus, we soon exceed
the potentialities of such methods- Only a firmly founded theory of limits
will enable is fully-to exploit the methOdsof the calculus. It is our,pur-
pose to provIde such a foundation in this chapter.

It is one of the triumphs of the calculus that an enormous variety of

significant fxoblems can, be solved by straightforward formal operations which-
readily yield solutions in terms of Serivatives or integrals. In the formal
calculus the idea of limit and the process of approximation upon which it is
baseci-disappear. Of course, there are always problems for which the,formal
techniques fail; for these the underlying theory becomes essential and we must
go back to finest- .principles.

- Naturally you cannot expect to'develop,the theory of limits
and thUs-acquirst a deeper, understanding of-the calculus without
an expenditure of hard thinking and careful work. Moreover, it
is unusual to obtain a complete grasp of quch a'subtle concept
at first encounter. The study of mathematics is a slow maturing
process, and you can be well satisfied if you coMprehend'enOUgh
of the theory in the chapter to enable you to follow its later

'applications. AS you gow in mathematical skill and maturity,
a more complete understanding will come; for the present, try to
see how Ve-are able to use the theory for the practical purpose
of developing a calculus--a scheme of rapid and efficient
reckoning--of limits, derivatives,. and later, integrals.

a
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The most important use of the basic theory is to approximate solutions of .

complicated problems in terms\of simple functions. SUch approximations are of

special interest in this day of high-speed computers. Although a problem may

have a complelte formal solution by the methods of the.calculus, for the pur-

pose of numerical computation it may save time, effort, and money to ignore

the formal solution-and treat the problem by approximation. Simple approxima-

tions play a fundamental role in science and engineering. A realistic model

of a phenomenon may iggigIve so many complexities that the problem is-intraol

table mathematically. As we shall see kn later chapters, a simplified model

yielding an approximation to the complete solution is often more useful.

Limits enter in, approximations to the solution 'of the simplified problem when

there isno formal explicit solution, and in estimation of the error when the

unobtainable solution of the realistic problem is replaced by the solution of

the simplified problem.
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Exercises 3-1

1. Consider f : x [x] + [-x] . (See Section A2-1 for discussion of

Ix] .)
(a) What 'number if any do the values of f approximate when x is

close to '1 ? When x is close to 2

(bY What can you say of the limit of f( f' as x approaches n
, 4

when n is any integer?

(c) Evaluate f(n) , where -n is an integer .

(d) Sketch the graph of f . Go back and check your answers to

(a) - (c). Do they agree with your graph?

2. For each of the following functions sketch the graph and, if possible,
find the limit as x approaches, 0 AD

(a) f : x x

(b) f : x
1
3171

(c) : x

(a) f' :

(e) f : x sin 1

t.

57
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. 3 -2.. Definition of LiMit of a Functiozam

In Chapter 2 we used the concept of limit of a function in defining

derivative.- At this point ye.needa precise formulation of the limit concept

in ordef to derive the laws which govern operations with liMits.

Although the concept of limit of a function is more general than the

idea of derivative, our study of limits was initially motivated by:the basic
;

example of the derivative of a function 0 as the limit of the ratio\ r(x)':

Where

m = lim r(x) ,

x-a

r(xy _4(x) : 4(a)
-

. _

In order to .be sure that the description of the derivative as the limit of
. A

r(x) makes sense we must be sure that we have an adequate set of approxima-

*tlOns, that r(x) is defined for numbers x arbitrarily close to a .

sually, the domain Of r will contain an entire neighborhood of a

/7 (excluding -et itself.)' but either for theoretical or practical.reas s it

is often useful to analyze the behavior of r(x) on only one side of -a .

For example, there is a natural starting point in the motion of a rocket and

it is essential to know the initial direction of the rocket in order to deter-
,

mine the rest of the trajectory.*

In framing the general definition of the limit of a function f at

point a we then require that we have an adequate set of approximations.

Specifically, the definition may not include the value f(a) ,among the

approximations, even if it should be defined; but it must involve values

f(x) for x close to a - For this purpose we introduce the deleted

h-neighborhood Of a ,that is,.the set of all x for which

0 < Ix - h .

As the set of approximations to be used in defining the limit of f at a

we take the set of values f(x) for all x from the domain of f in some

deleted neighborhood of a .

tions

*
In some texts this important case is en care of by separate defini-

ili

. -4';of "right-sided" and "left-sided" 11 (See Exercises 3L No. 16.)

r 6
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With these ideas in mind we are now able to express the ideseof limit

completely in analytical terms. If f has a limit L as x approaches a

then for any error tolerance 'c we keep f(x) within c of L by restrict-

Ing x to be any number from the. domain of in- a slifficidtiti

neighborhood of a .

small

DEFINITION 3-2. Let a 'be a point for which evety- deleted

neighborhood contains points of the domain of f . The function

f tras the limit L at a. if (and only if) for each positive

number- c , there exists w-positive number 8- such that

If(x) - LI <

for every x -in the domain.of T -which satisfies the: inequality

O< kK al

We then write lim f(x) = L .
x-a

It follows from the definition of limit,,since the value f(a) -itself

does not lie in the class of approximations considered, that any "function

which takes on the same values as f in some deleted neighborhood of a

would have the same limit at a.. For example, the two functions f and

defined below have the same limit at every point a of the re41 axis.

f(x) = I

0 , fc..2 x
g(x)

1 , for non-integral

Although we do:notrely upon pictures for our precise 'understanding of

the concept of limit it-isdedirable to have a geometrical-interpreti,k ion of

Ebcample 3-2a. The graph of the function

f : : 4

.

The definiticin of limit can be recapitulated in-terms of neighborhoods:
. the number L. is Said to be the limit of f at a if every deleted neigh-
borhood of a contains paints of the domain of f and if for each
s- neighborhood of L there is at least one deleted 5-neighborhood wherein
maps the points of its domain into the E-neighborhood.
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is shown in Figure 3-2a. In-order to show that

lim (2x - = 2
.

. -
we Must show, for every e > 0 , that there is a S., > 0 so that

1(2x 4) - 21- < c.

O

for all x- in the deleted neighborhood 0 < j x - 31 < It is easy to see
from Figure 3-2a how S may;be found.

1

'Figure 3-2e.

Given a horizontal band of wIdSh 2e centired on the line y = 2-, we can
_find a vertical band of width 25 about./x = 3 so that the graph cif f
lies entirely within the rectangle where the bands7overlap. From the'.graph-

1
.we infer that for e = 1 we may take S = 1

e = , S = , and for
I 5 =133-- . There seems to be no obstacle to finding a 5. for any e ,

no er how small, but we clearly cannot rely on plcctures to do so.

Inntead, we proceed analyticRily. If we recree 0 - 31 < S , then



Ai
4.

1f(x) 21 7 1(2c. 21

I2x 61

= I 2(x - 3)1

= 21x 31

<

Consequently, if we take

The

picture.

c

'5=
2

then

<

preceding 'example. was made especially simple to reveal the basic

We now explore the concept of limit. in a yeirlety of situations.

Example 3- 2b. igure
given by fa:Cx), =4.sgii(4--a)

x

3-2b presents
f2(x) sign

1 7 = f 1(x)- _

0

f
1

: x

1

x

the -graphs of the three function's

f (x) = 1 .'

1 Y = f2( x)

f
2

: x sgn x2

y-=
-3

(x)

'f
3

: 1

Figure 3-2b

61
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Observe 'that x = 0 is appoint of the domains 'of and f3 but no\ of
For each f these functions we wish to consider trZe 2-.1mdt, if it -,'exists,1

as approaChes 0'.

Since the three functions coincide- when x / 0 , and .the value 'oi* the

r- 4"." .474

al:5es not depend on how the functions are definedat x = , it is
clear that all.-three functions have the same limit. In each case 1 is the
obvious .caaidate for the limit. Verify` -that the conditions of-!Defihitil 3-2- -

are satisfied by L '= 1.;, at x.= '0 .

, Observe that there is a gap in the graphs of fl and f2 at x...0
.:.and that the grdph of f

3
is continuous, it has no, gap. 0The function f

1has a' limit at .x = OPP but is not defined there, f2. is defined at x = 0
but f2(0) is not its limit, f

3
has a limit at x = 0 and, the limit is
,--

the function value. We see then -that the: concept Cf limit. and the intuitive
idea of _continuity are closely-related; we shall pursue this connection
further inNSection

- Example 3-2c. Figure-3-2c presents the graphs of the two functions
given,by

. x2 + sgn(x - a)

= x2 + sgn4.77771. .

a

g, : x2 + sgn(x a)

Figure 3-2c
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The function g is defined for all values of x . The domain of g con-.r. 3 2
sists only of those values of x for which x > a and on this a.omain it" has
the sane values as gi It-seems clear from the graph that there is no... single
number L which is approximated by the values g_, (x) as x approaches .a

On the -contrary, in any neighborhood Of a; it is possible to find vallaes of .

for. which ga:(x) approximates a2 - 1 withi any given error tolerance and
other values which approximate a2 + 1 . Verify, then, that the conditIons
Definition 3-2 cannot be satisfied, that gi has no limit at x a .-

For_the furiction g2 , on the other -hand, it appears that no matter what
the error tolerance, there is a deleted. neighborhood of, a wherein g 2(x)2approximates a + 1 within the toleraxic- for all x in the domain of the

Thi-s is easily verified:. In a ueleted 5-neighborhOod. of have

of

,

2(x)
x2 4- 1 for a < x a -+ 5 .

--

We have for the absolute error of approximation

NIP

(x). (a2 +1)1
all

lx - a- - lx.+ al

.< 5(lx1 +1a1)

< 6[(lal 5) )g)

-(2) a1 4L5)

This absolute error can be kept within, aky givenv.errOr tolerance c by
restricting-- x to a small enough 5:neighborhood of a . 'simplicity, we .

of radius no larger than, 1 . Taking

we obtain a simpler bound on the absblute error

.."§:

firSt_restrict ourselves to neighborhoods

5 < 1 in the inequality above,

in -terms of the radius 5

_ a2 + a.) I -< s(2) al +

Now if we chAose 5 so that

. then we have ensured that

< 21a1 +1'

)g2(x) (a2 1)1 <

63
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namely, that the esror has been kept within the tolerance.e Since. this Rs

tv'prescription for controlling the error within any tolerance

accomplished our purpose and proved

-

liM g
2
(x) +

completely in the analytic terms of Definition 3-2.

we have.



Exercises

1. Show that if -0 - al < 1 then

2. Shcrli that if 0 < Ix - al <1 , then

3. Show that 0 < 1 x - 21 <,1 then

Hint: By ExerCi-se 10 of A1-2, if

Show that If fx a1 < then2 2

2 .

3-2

Ix 2a1 < 1 +31a1

1x3 a3 I < (31-a21 + 31a 1 +1)1x. a

Ix-

x

,

41

1.> 1 then

42... I Show that if 0 < 1 x = 11 < 1. , then .14x -I; .11 < 9

dhow that if t0 < lx - 21 < 1 , 'then Ix + 11 < 4
C

1 < 1 .

1
1

lx + 21
1 < 1 .

Ix2 + 2x 41

1 <1.

Estimate how- large x2_ + I can become if x is restricted to the open
interval . -3 < x < 1 .

8. Use inequality properties to find

0 < 1x - 11_< 3 for all x and,

-2.x + <M
:4".

(b) 13x 2x +- 31 < M

(a) Show that if 0 < 1 x - 3,1 < 1 and 0 < 1x - 31 < 7 then
c

-positive number: M_ such that

91 < E .

(b) Show that the pair of inequalities 5 <-1 and 6 < .(or

4
B < min (1 , 7-3) is satisfied by 5 = .

ci°
10. Find a. number > 1 such- that 1:cc 4.1 < M for P11

O < 1x - (See BO. 3.)

11. For the given value of c , find a,number 8 such that if'1\
O < ix - 31 < 8 , 1x2 - 91 <e

(a) c = 0.1.,
E = 0.01

Is your choice of 5 in (b)

such that

acceptable -as an answer in
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12: 'For the following functions, find the limit L a x ppro."-aches a
,For each value of Ems, exhibit a number 5 such that If(x) - LI' <
whenever Ix- = a l < -



.ter.

3-3. 'EpsiloniC Technique..

It is conventional in. discussions of approximations to a-liMit to use
the Greek letter epsilon for the error tolerance. For.this reason the sub-

ject devoted to teChniqUes. for the control oferroris c011 quially called
'eosilonics: We shall make. immediate Use Of epsilonic technique.. in deriving

the litdt theorems whiCh follow-this section._ Eventualrly, in applications,
skill ix epsilon' c

.

techni e will be extremely'valUable'for making estimates

when -.t.is,diffIs*1 -bo work with precise: values. To develop this skill it

is helpful.to set up\-ajroutine pattern in:which to present an epsilonic-argu-
. .

'Weihall:first describe the patterningeneraland-then,for several

exaMpleS, carry.out.the-proofs:aS indicated in the_ pattern_

Statement of the-problem..

To prove that limit, f(x)

x-a

Foi each toleranCei..e > 0 obtain a, .control 5 .

I?( al then.- If(x) 4.14 < e

Me-have.stated-he-,problem_in:outline. The proof, is based on Definition 3 =2
We must.contz'ol the 7error jf-(x) - 14 within the:-errbr tolerance e
restricting thelues Of_' -x to a sufficiently-sMall deleted neighborhood
of a . The proof completed by verifying for-a suitable radius 5 that
Sit does.give the desired degree of control.. The crucial open question is,

e" how do U2 choose a suitable .8 ?

Step 1. Simplification.

Find a g(5) -such that if 0 < 1 - al <.5 , then lf(x) - Li < i(5) .

The idea here is to obtain an upper bound g(5) for the absolute error where
.'g(5) can beheld within the-tolerance e by taking sufficiently small values

of 5 . If we have g(5) < , then lf(x) - LI < g(5). < z and our objective
is achieved. In some of He following'examples the work _._of simplification is
divided into three stages: (a) f(x) is,expressed in terms of'-x -ta ;
(b) from the inequality 0 < lx - al < 5 there is derived an inequality of
the form lf(x) , Ll. < g(8),; (c). .a is chosen for each c in such a way
that g(5) < In general, g is to be a simple function, one for which it
is easy, to find a 5 such that g(5) < z . More:typically.,- it will even be
possible to solve for 8' in the equation g(5.) = e . , For most of the cases
in this text it is possible to obtain g(5-)-= c5 with a..positive constant of.
proportionality c . Manipulations-yielding a simple.exmression for g(5) -
are illustrated in the Examples below.

Step 2. .Choice of 5 :

Choose 5 so that' g(8) < e .

This is the place where the work Of'implification i'n Step 1 pays off.



the most, typical case where g(S) = c5 we may choose 5 = .

Steps 2 find' 2 show how the solution as found. The next step .is the

actual proof where_ we verify that the solution has been found...

Step" 3. Verification..

. 'Return to the statement of the problem. From the given expressi3On, for
deduce the conclusion.

First we try out the method in a
:case Of eneral linear, function.

Example .

case where no complications arise, the

Statement Of the problem.

To prove that liar (mx + = ma -+ b

For 'each- > 0 obtain a 5

Show: if 0 < < then If(x) - L

Step Simplificationit

f(x) (mx +.(a)

(1D) If <

- (ma + b)

m(x - a) .

I
f(x)- L I = I

(c) Take g(8) = 1m16

Step 2. Obtain ,e) .

To make. g(5) < E , set

=

aYI

Ind al

(allowable, singe Im t/ 0 by assumption) .

-. Step-3 --Verification. n .
Rnter' the result

m
in the statement of the p,roblein. The'-verifi-

.cati'on foll&ws the pattern of Step 1 with one additional step:



lf(x) - Li .< 1ni.15

< iml

< - .

Since tb.ere..:is a strong- inequality in this chain,

Li <

An the following examples we 'shall omit repetitious material.
-

Example 3-;3b.

Statement of the Problem.,

1To prove that
xis
m 1-2-rc -- 1

-0

For each c > 0 obtain a 5

Show:

Step 1.

0

if 0 < Ix - 01 < 5 , then

1 1
1=

1 1 < E1.-}77

1 + x I(a)

(b) If < lx - 01 <

.-

5 ,

4 7

- 1x1

1 x

1 + fx1

11 11 11-+171-11

lx
11- [xi.

< 'xi
<5.(7

(c) Take g(5) = 5 .

.

(since 1 + lx1 >1).

__Step 2. To Make g (5) < c set 5 =

Step 3._ _Set 5 = E in the statement of. the problem. We carry out the

verification following Step 1 where we set 5 = E at the last line.
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-The next example shows that it is not always sufficient to choose .8

proportional to e ..

Example-3-3c

'Statement of the -Problera.

prove-that lim /Cc = ,

For each . e > 0 obtain a

Show.: if -0 < Ix - al' < 8 then
I - -7711 < E

The choice 8. =.c , where c is a positive constant, cannot
work when a = 0 . In that case we observe that if 0 < x- < ce,
then:. "1/7 .

.
'We mu.s-t, then make J <e= for all no matter how .

7..small. .. - ..--
.

It follows tha. we must find a positive number c. satisfying
<',IT Or; equivalently, C < t for all positive . No' such

number exists; hence, 8 = ce cannot work.
-,. .

.Step From

I.17 1/171 < i/SZ-42-1/Ttr'

we.; obtain. on raultiplyi5w,,by I 1 - VT.1,

1E(- 112< Icx - al

whence

Thus,, if 0 <

<,/ix - aj .

11-3 vat <
Step 2. Choose S = e2

Section Al-3, Formula 3)

tt,
Step 3.. Take .3 j in the statement of the problem. The verification

is: a recapitulation of S this :chiAice of . 8 -. .
.

. .It is often -expedient to-,rest-rict S by an auxi'iary 'Condition an

Step 1. The following examples" are typical. .

Example 3-3d.-

'Statement of the Problem.

,To prove that (x3 - 5x -
x -2

I 'To

-.3



For eadla c > 0 obtain a. 5 .

Show: if 0< lx - 21 G 5 , then

- 1.- (-3 )= - 5 '+ 2

- 2) + 23 - 5kx + 23 + 2

(x 2)3. + 6(x. L 2)2.1+ 7(x - -2) *.

":

1 L. "(-3)1 1.(X - + , + 7(x 2)

3 -3

- 5x -. 1) - ( -3)I < e

)-1(22)2 8(x 2) .± 731.

j
< -.21 . (lx 212 +.6j2'ci._: 21.--1- 71

<5(52 + 65 + 7
N

.(At the last line we used 1 - 21 < 5 .)

(c) For convenience we restrict. 5 by requiring 5 Under

this condition

x3 - 5x. 7 (-3)1. < 5(52 + 65 + 7)

< 5(1 6 + 7)

< 145

In....-order to getter upper bound in the simple form c5 , we put a constant

bound on the second. factor in. 5(5 + 65:+ 7) by restricting a- . (The

We- could have requiredParticular value 1 in 5 < 1 is ,inessential.

5 < K whe-re;--.K is any positive constant.)

Step 2. We now w-_ 3h to obtain a value a satisfying two conditions
- . -

simultaneously: 5 <T1 and 5 < 1 One way of satisfying these conditions

is to set

5
E

-

9 .

whete have' chosen the denominator simply as a
corrvenient.val4

ue which is

greater than either 1/4- or t . (See Exercise A1-3, No. 6a, b.)

$tep 2: Set 5 374-=1..e t statement of the problem: The verifica-

tion follows Step. 1 through (b)_- In (c ) we .use 5 < 1 and s'
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. to obtain

oc3

Alternative Step 1.

(a) x3 - 5

- 1) - (-3)1 < c .

( -3 )

JX? + 21 = 1 x

< 5 [ix2

( < 111-6

where, at the- impo sing .the. condition 5
utilize, the' result 1 < x < 3 obtained from. 1 x - 21 < S < 1

Alternative Step 2. gince, we dro not use the formula for 5 in the .

verification-above but only the conditions 3 < 1 and 5 < -Er
2
it -is natural- 14

....e.---''.( Al 3) to set

8 = mintrz ,E 1) .

Alternative Step 1. Set S =- min(Tz , in the statement of the prob-
lem. Thegteri.fication follows, alternative Step 1 above.

From the preceding example we see that we have great freedom-_in choosing.
our control 8 . We can always use more stringent controls thin necessary:
that is, given any deleted neighborhood of Ix - al. , so chosen that
If (x) - T.,1 for any x in the neighborhood, then for all x in any sub-
set of the neighborhood 'and, in particular, for any smaller deleted neighbor-
hood. of a , we satisfy the same inequality. In other. terms, given- any
which keeps the _error within the specified tOlerance,- any stiaailer value= of
will certainly haVe the same-effect. It follows that we may impose the condi...-.

.

tion 5 < IC Where K is any convenient positive constant. Similarly, having. .found a 5 for- -a particular e. , lie:know that the same _8 will_ suffice for:
. _any larger e Hence we need-concern ourselves Only with those c- sa.-bis-="

,fying e < M , where,
.

M is any -convenient positive constant.
. .

We. conclude.. the- list. of examples by applying the techniques of the out---..

line to prove that the conjectured- values.-of the derivatives in Example 275a
. and Ekagple 2-5b are, in fact, the correct;liMits:

72
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Example 1:3e.

Statement of the Problem.
e

To prove for a. / 0 that

1.... _
x-. .lim r(x) = -11m_

x-a, x-a x
\1.For each E> 0 I obtain a S.

Show: if 0 < lx - al < 8 , tfien 1r(x) - L1 4 .

(Obsercre that r(x) is not defined at x = 0 or x = a - )

L2a

Step 1. -

1'1

x - a
2a x

(l'iOte that we' 'used
/ a.)

1
a21 x1

from

1r( L

O
x ain setting (2-1-2 - 1 for

. 't

21a !x-
; -

probiem- now is tO. -obtain a' con,stant Upper 1:;ound. for the factor..
1 . It is suf. ficierit to bound the denionimato/.awacy

0 or to.. guaraxitee

3-3

/ a)

- a) + al .

"for some nflmber We -have

1x1 = 1(x a)

x - C 0 .;
g

(Appendix. 1 -3, Forrtila

73
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./"'Entering - a <: 5 in this relation, we obtain

> I I Ix - al > IaI.

To obtain a constant lower bound C we restrict * -5 < In that casec

5

ixl - 5 >1!---"4- > 0
2

and C,....-- -LILL

It follows from l x - al < 5 that 1-.N1 > -Lai _and 2
2 -17Ekercises41 1- <

-3,,No. 20). Consequently, from (1), we have
.

. -,

.Ir(x) - < 5

P
2
ix!

< 5 2
a2fai

< 5 ----2

lai3

Step 2. The value of 8 is restricted by two conditions;

. < 28 - 25 <and ----
7 :

To .satisfy both conditions we take..

Of .course., in general, we could restricted
way-so that S <441,' . For definiteness we-took

5 < 2

..

6 .Convehient,



.3-3

%,

Step 3. Enter the above val'ue of. 5 in the statement of the problem.

T he verification follows the'pattern of Step 1. At the last -line we use

5 < e

to obtain

2

.1r(x)'- LI < e .

RtEunple

-Statement of the 14oblem;

Zi 1To prove for a > 0 :that lim r(x) = lim - L.
x- - 'ax-a X-8 21g.

For each c > 0 obtain a 8 .

Show- ; if 0 < I x- - then ir(x) --LI < c .

(Observe that r(x) is defined only for x > 0

Step 1.

/;(x) -
!

- ..- 1

(x

(a) -X - 8

1

21g

1

aracri +
1

a. - X
ara(iFt.

(Note; that not defined for negative values and therefore

we guarantee 0.< x by imposing the restrictions Ix - al < a .

For, this purpose we require 5 < a .)

21.



.

1.1-(x) - LI

Step 2. Take 5 min(2(-Et)

from x I < 5) , .

(from 1/5-c > 0)

Step 3. For the above value of S every expression used in Step 1 is
defined for all x in the deleted 8-neighborhood 0 < lx al < 5.. (This
requires x a. and x > p46. ) They verification follows Step 1. At the
lait line we use 5 < to obtain

Ir(x) - LI < E .

In the preceding examples we have not always followed the
outline:: to the letter 94 used it -only- as a serviceable guide . _

SPec.4.1 difficulties are likely to'appear in Step 1-and we cannot
antiCipitte all,contingencies The only a.bsolutely general .pattern
is the constructi-on of .a non-decree:sing chain of expressions.

r60,-< 951 < 932 < < Y5n.

Where- 00. -,.. L( , On -- gt8),....)and 01 , "f6 , ,
involve both x and 8 . To construct such asequence
case ma-y require the greatest ingenuity.

may95n-1 ma
in a particular

et'

In 'these examples we have Verified that a given value L is actualty the z
limit but-,have- riot shoWn how the limit L was obtained. In the next section
we *aall develop, general theorems which will enable us to discover the value'
of the limit and to pro:vethat the value is correct. Epsiloni& will be-
necessary to prove the ,'e theorems not, -to apply them..



1.

Exercises-3 -3

Prov - lim (75x - 3) .---1 : obtain an upper bound". E(5).

error and find 5 in terms of

2. -Give arguments that proye

lim-c = c , c any, constant.
7C-EL

(b) lim x = a .

(c) lim kx.= ka-, k and constant.

(Use the results of Example 3-3a of-the text for parts b and

3.'t Invoke the definition directly to prove the existence of the limits in-,

7-=

3-3

Problem 2.
I

. In each of.the following guess the limit, and then prove that your guess
- .

is correct.

lim
x--0 1 + x

x2fx
4-1

3 ,m,x -.a3

x - a
x.«.a

x + 1
(d) lim

x-.1 x
2 + 1

1

2
Ce) lim x

2C3- 8

lim
x3

x.p.0 x

14-

3x - 1
+ 2

14.x2 sx -
x

77
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31-4. Limit Theorems.

If the epsilonic definition of limit were required in every calculation
with limits,,the development of the calcu/Us would be so disjointed and so

. overburdened w±th elaborate detail that it could only be mastered by a few
devoted speCialists. We need-and we shall derive theorems that broadly cover%-
most of the significant calculations 1,.-th limits. In the -end it will only be
the exception'al cases'for which epsilonic techniques-.are necessary.

The first general results-apply to rational combinations of functions,'
expressioils'formed,from the functions of a given set by the rational

operations of addition, subtraction, mmltiplication, and division. If each
function of the given set has a limit as x approaches a , _then the limit
of any rational combination of these functions is the,same rational combination
of the corresponding limits (with divisions by zero excluded).1

There are certain special rational combinations, called linear combina-
tions, which recur .often in different contexts. It is worth distinguishing
them as a class because of their importance. A linear combination is built
up by addition of functions and multiplication of functions by constants.

.Such a linear combination can be put in the form

0 : x 0(x) . cifi(x) + c2f2(x) + + cnfn(x)

where c
1 c

2
,

'p
, c are cbnstants. In particular, aolynomial of

degree lest than or egnal to n ,can be written in the form

and may therefore b
2 , n, x -

The. evaluation. of the limit of a linear cotlibination-is an instructive
instance of the general methpd of evaluating:the limits of rational combina-
tions:

0(x) = c
0 + c

1x + cax
2

+ + c
n
x-

thought of as a linear-combination of po ers

Example

o
;-
V--

4

14.m(613Z-+ 5'4-.1E. .-. 11 6-1 + lim 5x +-lira rc 0X-4.- x--* . x-4 7
c;:

.

= (1 6) (3.1171 IR) + (3.1.:a5)(iiir x ) + -lira. n
. s,xIi. .pc-4 x. .3c:-.4 x-4

6 lira zgc-.4--- 5 . ilia x +
x-4

. x-4 .
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Notethet in the example we have used three.limit theorems without proof;

in essence these are

(1) The limit of the sum of two fUnctions is the sum of the limits.

(2). The 4mit of the'prOduct.of two functions ,is the product of the

limits.
ANL

. -(3) .The limit of a constant-is that constant_

Consider the Statiment

1IM c = c
x-a

Note that the interpretations of c on the right and left of this equation

are slightly different. on the left, c stands for f(x) where

1 I M

A

and on the right' c is the particular value assumed by the function for each

value of x . With this in mind Ve have

THEOREM 3-4a. For a constant function f

Prpof. We have'

lira f(x) .

x-a

lax) cl = lc - cl-= 0 <

_

for every positive e and every choice of 5 . (The constant function a

-triVial case, of course; but we include it for completeness.)

:ter

THEOREM 3-/I-b. If lira f(x) FL ,.then for any constant
X~El

11m c f(x) = a itm f(x) = cL .
x7-a, x-a

Proof. We may assume c 0 for if -c'= 0 , the problem is reduced to
r.

that of TVOrem'3-14.. Given any e'.> 0 , we wish to make

'4Z

.
..

- lc f(x) =,c

._

:.

by restricting x to a deleted neighborhood

0< < .



*
Prom the hypothesis we know that for any e ,..),re can find a

then

and
.7

1000 < lx - al < 5- ,

I f ( - L1 < e* ,

f(k) 7 =1c1 . 1f( ) L1. < Icle*

g * _

Accordingly, we chbose e = -rI- , obtain the appropriate value. 5 for this
* . -ICI

e , and set 5 = 5*'. . -

In the following theorems we require that in some deleted
neighborhood of a the domains of the functions entering the
combination all coincide. This requirement eliminates nonsensi-
cal combinations such as f(x) + g(x) when f(x) it-defined
only for x > a and g(x) is defined only for x < a . The
likelihood of ever making such a mistake is extremely small and
therefore we do not mention this restriction on the functions
explicitly in the statements or proofs of the theorems.

THEOREM 3-4c- lim f(x) = L AMC]. lim g(x) = ,M, then
x-a x-a

that

lim [f(x) g(x)] = L M .

Proof. We -must show "that for any given E > cy there is some 5 such

If(x) g(x) - M) I < e

for all x. in the common domain of -f and g satisfyAng

o < Ix --al

Eton, the hypoth4s we knaW that for any positive e
1

and "e no matter how .

small, we can find 5
1

and S
2

such that

But

If(x) 1,1 < e1 when 0 <

1g(x) MI <C2 when a < Ix - a1 < 52

<51

If(x) -F. g(x) (L F m)1 = lf(x) g(x)

If(x) - Ig(x) - 4 .

8o
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.

To keep within the tolerance e we can choose E
1 and E tb,-be any posi-:

tive quantities whose sumfis' E convenience, we fix

-*

/ E1=
2 2

he appropriate values Si , -for these values el
'

e
2

we set

se,'= min(ol, 62)

or this choice of 5 , whenever

then

"L
< IX - <

St

If(x) + g(x) - (L + M) I + < E .

Since a linear Combination can be built up by successive operations of

addition of two functions and multiplication by a constant, we obtain

Corollary. The limit of d linear combination of functions is the same

linear coMbination'of the limits of the fuUctions; i.e.,- if

lim f
i
(x) = L. i,= 1 ,

X~El.

then

lim [cifi(x) + c2f2(x)
nfn (x)] = c lim f (x) + c

2
f
2
(x)

, 1x-a 1 X-a x -a
lb .t

+....,÷ cn lim fn (x) = + c I 12 + + cnLn
x-111.

The proof is left as an exercise.

For general rational combinations we have the further operations of

multiplication and division.

Example 3-4h.
.......-

lim [1 3E. - 2x
2 IR] = lira1 (lim 2)(1iMx2)(1im -IR)

X--4 x-4 x x-4 x-4 x-4
1

- 2(11m x)(lim x)(11mL -17,)11m x
x-4 x-4 x-4x-4

tik

1 3= - 2 . 4 . 4 . 2 = -

Sl

1/4



For 0(x) = 2x2 la let us see in detail bow 0
simple steps. We set

-where.

( '-
and th-On,

f 2(x) = xf (x)

f Cac) = (x).3 2

-2f3(x)

Z2!%gi(x)
f5 (x) -g777 '

Tx) =

g
2(x) x

,..

can be /.built up in

. _

(multiplication)

(multiplication)

(multiplication)

(division)

0(x) = + f5 (x) (addition)

It is, of course, tedioub and unnecessary to decompose any rational combina-

tion into its elementary building blocks, but it is important to realize that

it can be done and to know how to do it. (For example, it would be necessary
to do so in .writing computer programs.) In the process we have seen that to

prove the general theorem cgn.cerning limits of rational combinations we now

need to prove only-the two special theorems for the limits of the product and

quotient of two functions.

TEEOREM 3-11. If lim f(x) = L and lim g(x) = M , then
x-a x-a

lim [f(x) . g(x)1 =
x -a

4'roof. We wish to estimate the difference f(x)g(x) - LM , :using the

knowledge of the difference's f(x) - L and g(x) - M given in the hypothe-
sis. Nov

f(x)g(x) - LM = (f(x) - 9g(x). + L(g(x) -

= (f(x) - )(g(x) M) 14( L)+ L(g(



hence,

(1), If(x)g(x)- LMI < If(x) - LI Ig(x) - IMI .If(x) 7 LI ILI g(x) - NI .

,From the hypothesis,we know that for any positive numbers and e there

are Corresponding controls -.5
1

and 32c such that

MI < E2

Thus if we choose 5 = min(51,82} , it swill follow from (1) that when

0 < Ix aI < S then

(2)
-

If(x)g(x) - LMI < cic2 + IMIE1 + ILIe2 .

In order to keep from exceeding zthe tolerance e -we shall choose el

and e2 so that

cic2 IMIcl ILIe2
< c ;

this will then determine our choice of 5
1

and 5
2

and in turn that of

For convenience, we require that c, E2 = v and that v < 1 . Then'

(3) c1e2 + IMIci +ILIc2 < v(1 + ILI + IMI) .

We are now ready-'t choo se v and verify (3). let

v = { 1, 1 4- I1,1 TMI}

z Choose the. co espon ing Si and. 82 and let 5.= Trirq5. ,5
2

. Then it
k.

folaws from and (4) when 0 < Ix - at < 5 that

as desired.,

If(x)g(x-) LMI <Gv(1 + + < c

Sirice a polynomial p(x) is a linear combination of powers, and powers

are theMselves pr:oducts,



k = x .

we can establish the following corollary.

COrollary. For any polynomial function_ p

limp(x) p(a)
x--a

factors,.

The proof of this corollary is left as an exercise (Exercises 3.4", No. 2).

' 'To prove the limit theorem for a quotient f(x)
;.:'it its. nly -necessary

proVe the limit theorem for a reciprial ,' . ".-' 'The rule fOgrgenerfil vas:g x
...

--.s.".,t-ients then .follows from

.--:. -il

t>,-f(x) 1
= f(x),[i-cn-c

First we prove a Useful preliminary result.

Lemma. If Um g(x) = M and M > 0 , then -there e.xists. a neighbor-

hood. of a where 'g(x) > 0 for x -in the domajn of- Vg

Proof. Since g has the limit M at a , there is a 5-neighborhood
of a wherein g(x) is closer to M ,than to zero:

In this neighborhood,

g( x) - MI <

> g(x)-.1-4-> .
2

P. -

.
,z . .

If -%-the function ,0 'ha.; a negative limit' at x = a then, upon applying'
....Lemma 3;4 to the function -0 , we see at once that. 0(x) is .-negatiye in some

deleted neighborhood of a . As
.rdiv

"\the following two -corollaries% -- . =
;

borhood of a

x^.8.
NI

A'

, .
, Corollary 1. If lira g(x) = rind. , (O ,, then-there exists a. neigh-

, ..

2 .

for in the domain of g..'where 5.-- >I g(x) I > 1-.1PM!

V'

zasequences of.temma we have

Corollary -2. A limit of a function whose values are ronnega.tive .1..s non-

negative.

S_

Si

5

11.



The proofs of these corollaries are-left

ti

(2)

.

exercises.: -"(Ekercisea 3-4, NO-.3
. .

. If ) M AndYfi.0 en
x7-a

Proof. lie 'have

lira

x-11

. -

Provided ,g(x) l 0.. However, from Corollary 1 to Lemma 3-4 there is a

'8-neighborhood of a wherein Ig(x)1 >11 . Furthermore, for any e the

neighborhood can be taken so small that also
.

.

1g(x) - MI < e* .

From (2), therefore, we have

Where in the last line we have taken

( )

1M1
121

- *-
2c

M2

<.E ,

* M2C
E -

2

To compl to the proof we choose the value of 5 appropriate to this c

-COrollary 1.- If lim f(x) = L and lim
x-a

Ism f (x) L

x a g7 7, 174

g(x) = M where , then

o
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Corollary 2. If p. and,

S

0

are polynothials

lim p(x) p(a)
9(x)

d if 4(a) / 0 , then

In connection-with these corollaries, we,observe that if lim g(x) = 0
x -a

the quotient, 11 maystill have a limit-. Under these conditiOnsx
lim f(x) .0 is a neCessary:but not sufficient, condition for existence of-

.

a-

lim
g x

. -The priLry.example is the deriative.Of a o expressed-as:
x-a

of a ratio for whiCh the'numerator-and denominator both.approach A_zero, It:da not_ possible' make any'general'statement about the existence
of the _is ,passible that lim f(x),=,0. and yet that

x-a
-.

'the limit of the quotient does'not exist for example, lim x
). (See

.x -Ox
Exercises 3-4, Nos. 11+_ and 15.)

In estimating lim f(x) z,Te can-often bound, below and above by -.1t.?,xL.-

tions g and h _which have limits as x approaches a 7In.that case've7
expect that the limit of f is bounded below and aboe by the limits of
and h . -This result is a direct consequence ofthe'foll6wing theorem.

TEEORkM 3-4f. If f(x) <-13(x) in some deleted neighborht od. of a
lim f(x) = L and lim g(x) M ,then L < M .

. x -a

Fr Since g(x) - f(x) is nopnegat4ve it follows that

lim [g(x) f( )3. = M .

- X-8.
0

(Theorem 3-4c and Corollary 2 to Lemma 3-40

Corollary 1. [Sandwich Theorem.]' If

40

h(x) < f

.in, sortie deleted neighborhobd

and

dim h(x)=- K and lim g -= M ,
x-a._

8e.

944.3-6.



then, if lim f exists,

_

X < lim f(x ) <H
x--a

Coroll [.Squee.,ze.Theorem. If h(x) < f(x)-< t(x) in some '

1.*-"e163e1 neighborhood of a and

ten

u rn h(x) = liui g(x). = M ,

-x-a x-a

3-4

`.*.1
lim f(x) = M_-. ,
x-a

a.

87



Exercises 3-4

ve the corollary to Theorem 3-4c.

. Prove the corollary to Theorem 3-4d.

3. Prove the coronaries to Lemma 3-4.,
. .

4 Prove tke corollaries to Theorem 3-4e.

5. Bind the foll6Wing limits, giving At:each step the theorem on limits

which justifies it.

(a) lim (2 + x)

(b) *-7-1321 (5x -
7 .

X".

(c) lien
e

(3_ 413--rc

(d) lim (x3 + a:x2 + a x2

17) where

x-a

e

-

c:1a a \---b' -'are constants.

+ 43) where a - is constant.'

1>

6. .Find the.following limitsgiving at each step the theorem which tatifies

it.

(a) 11 x
3

1
x-..1

x2 -1
(b) ii.m

x.-3 X' = 27

n I

,xFind lim x
- 1

for n a positive integer. Verify first tlikt,
x-1

n
n-1 n-2t x + + x +

4

-

8. Dine whether the following limits exist and, if they do exist, find

their values.

(a)
itm

1
:I"

- xX1

140 'lim-Cxn -

x-a

'

; n is a positive integer,

47:

c) 12-4--X + 1

X; x +

(d) ltm (.*
2)(7 - 1) .

x.:1-4. x2 + x - 2
.

(e) ltm 1
x.-1,

- x-1 9t,j

88

is constant.



Usihg the algebra of limits show that

if lieu

x -a

f(x) - f(a)- L(x L a)
ix - ai

f -
lim,

(xY
x -

x -a

f(a)
a If and only

10. Assume lim sin'x = 0 and lim os x = 1 . Find each of the following.
x-0 xwO

limits, if the limit exists, givi ng at each step the theorem on limits
which justifies it.

.(a) lira sin3x

(b) lim tan x
x-0

(c) -lim tin 2x (f) lim
x-0

(a) Proire Corollary / to Theorem 3-4f.

(b) Prove Corollary 2 to Theorem 314f.

(Hilt: Prove lim f(x) exists.)
x -a

sin.x
tan. x

1 - cos x
sin x

cos 2x
cos x + sin x

x + amAl2. For what integrAl slues qf and n does lim exist?
x--a xn +san .

Find the l imit for, ihese cases.

13. Prove that if lim f(x) =='0 and g(x) is bounded in a neighborhood of
x-a'

x = a then lim f(x) z(x)
X-a

. .

14." (a) Verify that if
g exists and if, Lim g(x) = 0 then

x-a .x-a

lira f(x) = 0 .

x-a

(b) Describe. Sp_uictions f and g 'Tor which lim f(x).= 0 and
x-a

lira g(x) = 0 yet the limit of their quotient does mot exist.
x-a

A15. Prove that if lim g(x) = 0 and lim f(x) does not exist, then the
x-a x.a 4

limit of -the quotient
g x
f P).

)
does-not exist.

.,.

:a9

a
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16. The right-hand limit at a point`- P(p,f(p)} of a function is the limit

of the function at the point P for a right-hand domain (p p + 6) .
.'Similarly, for the left- hand limit, the domain is restricted.to

(p -T5 , p) . We denotethe4
+

-4ymbolically, by lim'-f(x) and lim f(x) ,
,

x-p

respectively. In particular, lim [x] = 2 , lim Exj = 1 Determine
x-24 x-2-

the-indicated limits, if they exist, of the following:

(a)
,

4-

Do
2

2
-

lim
x-2 x - 4

(b) lina.
DO

2
4 .

x-2- x2 - 4
.

(c) lim (x - 2 + [2 - x] - [x]) .

x-3+._

(d) .lim (X .- 2 + [2 - x] - k .

x-3-

( e) lim )S( Pi-
x

[!-})

x-0+ a x
5

(f) lira
a -Lx

III = _b
x 5

x-0
_

IS

N)

(g) lim ii-

x-0+
4 -117-17: - 2

a. > 0 5 b > 0

a > 0
5 b > 0

/
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3-5 The Idea of Continuity.

The idea of 'continuity is intuitive: most of the functions which we

studied in Chapter 2 had'unbroken graphs, and these are appropriately called

continuous. It is intuitive that a moving object traces a continuous path:

the object cannot digappear at one place and reappear instantaneously at

another. If we describe the path by s = 0(t) , then the function 0 is

necessarily continuous.

We.have also seen graphs with breaks or gaps, e.g., FigUres 3-2b and

3-2c: Sdch graphs may be the appropriate way to represent certain kinds of

physical situations. Forinstance, light moves through the air at a velocity.

of approximately 1.00 c , through water at a velocity of approximately

0.75 c where c is the'velocity of light in a vacuum. If we use a function

s to. describe the velocity at a distance a along a beam of light that

penetrates a still-body of water, then the function is discontinuous at the

water surface.

The graphs of Section,3-2 show some ways in which a function can fail to

be continuous, and they guide us to an inf.:,rmal definition of continuity.

function f
1

of Figure 3-2yb is merely undefihed at° x = 0 , and consequently

its graph has a break there. The function f
2

has a value f2(0) but the

point (0,f2(0)) does not.fill the gap in the graph: f2 has the limit L =

as x approaches 0 , so that the values of f2 near x = 0 are successively

better approximations to L ; but f2(0) is not approximated by these_fUnc-

tional values. For f
3

, on the other hand, the function is defined at x = 0

and the values of f
3
(x) do approximate f

3
(0) as x approaches...0 .

Previously, while investigating the limit of a function _f as x

approximates a we paid no attention to the value of f at a , or even to

.the question whether f was defined at a . As abstract concepts, the value

o f . at a and the limit of f for x approximating a are unrelated.

However, we needthe concept of a continuous function; if lim L
x--a.

thenYi.le graph of f will,, have no gaps if L = f(a) .

We first met discontinuous functions in our differentiation procedure of

Chapter. 2. _To find the derivative of f : x 0-x2
, we need to find the

. -

limit as x approximates a of the ratio

2:-
a
2x x - a

_ + a)-.
x = a x - a
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There is a gap in the domain of r : the formula for r is meaningless at
x = a . To define the derivative we-fill the gap. We observe that
r(x) = x + a when x a and that the value of x + a when x = a is the
limit for .r(..x)__. We use the limit to fill the gap in the values of r and
thus we replace the discontinuous function r by a continuous function
:where

p(x)
lim r(x) ; x = a .

x -a ,

p ,

The function g
1 of Figure 3-2c illustrates the fact that It is not

Ialways possible to redefine a function so as to make it continuaus'at a point

even when the point is contained in an interval,of the domain of the function.
To fill the gap in the domain of g we would have to choose a value for1 c
g
1
(a) yhdxh is a limit at a for the function on both-the-restricted domains .

one consisting of all x for which x > a and the other of all X for which
x < a . However, the two restrictions of. the domain lead to different limits

so that-no single number is approximated as x approaches a . We are at
liberty to redefine g(a) as any'real number we'liish; but since g fails to
have a limit for x approaching a the values of g cannot serve as

adequate approximations to g(a) for all x in a deleted neighborhood of a
ancrtherel'ore cannot go over continuously into the value g(a) .

From the study of these examples, we can abstract an in-Pormai definition

of the concept: continuity of the function f- at x = a. To-ensure that the
functfOnal'vailUes have no break, f must satisfy three conditions:

(1) .f exists ;

(2) lim f(x) exists;
x -a

(3) f(a) = lira f(x)

Continuity will fail at x = a- if f- is ,undefined (e.g., fa, of Figure 3-2b
at x = 0), if the limit fails to exist (e.g., g

1 of Figure 3-2c at x = a),

or if functional value and limit both exist, but are not the' same (e.g., f2
Of Figure 3-2b at .0). If the 'limit of f exists but the ±"unctiorial value

is undefined, then a new function so defined as to agree with f at points
other than x = a and to have the value lim f(x). at x = a will be con-

X-11

If condition (3) holds theivonditions (1) and (2) are implied. We.
shall therefore adopt (3) as the basic definition of continuity.
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h or . 3-2b 1., by f ) If the limit of

f(x) as x approe.c_Des ..'A to e7-
l'aced ---unctp.1.1

`..;,-.Iiretinuous at x = a 16e,g.'
' p, t-,EL,1:.) -"- 16 _Lj.St t

,hen any- agreeing with
oci_ -or, cloanaeq

2 . .'

e.,..- scont irruou6.
. there (e.g.

f in .a deleted neiglsbor- ..., Et 1, tc:, be

g of Figure 3-2c at, a
1

,t,Ile Ica% of -

the Definition 3-2. .

the preceding discus,aion

express the Pelevan-t pro,r

Before establishing

--.)

,

-. fizic

gith
,orty, -sin ) sitioll.

'::::ie::
)z.-.a.

f'.1-:i.:
by

-1..nuaa5

. .4.s del- .

Fo)-.- this purpose

functions, we supplement

DEFINITION 3-5, The 'z:iti f't 1..h

at a-point a of i' 1.1 if e . ted Ile
--Aed. to

:ghborhood ofy Qi.otaa4,. eery
deleted

)...11tS (:),
ciarrie.i.n,

t

a contains other p° 'the ktIci,
for

every e > 0 ,

' 1.) such
there exists a' E- 7 -that

..i.

_

I Is r\k)
) _ . .

dornaill that % "the, inequality
l

for -every )c.., i the of f -4-t--i. s'fie

1

tion Quivlitiz
We verify that. its to

.the earlier three-part

Since
definition. The 'req.:lie, k

EL must be in the

,e 1 - <
domain of f . If hay 1.()C) f(P For 8-1 Such that

k 5 y we surely fe that < 1)c < a / so
that .11m f(x) exists. , s best

r(4)
aPPeofs

in the inequality

x-a pre ze).,

If(X) E

:1.14 pr. ecloely ;the place where
If(x) thef(a)I < c f he

appears in the ineq13101itY
we have

lim f(x) f(a) . tr" three'part
. .e,.inition areti

x-a- ,. .

implied by;. the -formal Ccill...sej.y., ve., a-ls
the £Qrmal definition

e the t)... 0,...t u_el!ls&veci. at
i by- replacing 7-he tees o)- '-LIN p

4/ vilth their analytical

. re Nrzia.. ---- , the 1 tion

point interior to an int°.

A geometrical, -T.riter9 '`'k, of D9
'''etati

-`1 1:ts ..(3.0:airinit:"--7]::malcoiaun5tiv:ia..1:efeninit.

.

ion implies that
expressions; therefore, eckl..--by 0"' for
of the formal one. The --tItioll. the continuity of a function at a

....v ea_ -,.

. .
immediate:

thz
ponding to any ppsi-iiire is

of I./it:1th

midpoint: a su.cp f- b ever
X

an interval of width ,

-terms .

2e with f(a) as tnicipo5.- cother. each It is possible to
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confine the graph of y = f(x) to the strip f(a) - < y f(a) + c by
restricting the domain of f to the interval. I (Figure 3-5).

Figure 3-5

Note.that to find a limit as x approaches a we examine deleted

neighborhoods of the point. but to check continuity at a we include the
point itself and examine an en-tire neighborhood, without deletion. It is
.because of this distinction that the inequality

0<(x -al<5

.of Definition 3-2 may be replaced by the inequality %;

I - al < 5

of Definition 3-5; moreover, the value f(a) at- x . a now plays the role of
the limit L .

.2e -
If the condition of the definition is met,- then a is a point of 21017

tinuity for 'f . A point a where this condition is not met is a pdint of
discpntinuity of f-, and f is discontinuous there.
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Note particularly that if f(x) is defined by a formula whIvh has no

real value when 'x = a then f is discontinuous, at a . For example, the

function'. f given by f(x) is discontinuous at a (It is also

true by this definition that the function g given by g(x) = is

discontinuous at each point a satisfying lal < 1 , but points geparated

from the domain of f are of no interest here.)

Example 3-58-

defined by

The absolute value function f(x) = lx1 -(Figiare 3-5), is

x if 0 -< x ,

f(x) =
-x if x < 0 .

We ask whether the function is continuous at -x = 0 , wherehe two intervals

of definition meet. Given any e > 0 can we find- 5 > 0 such that r.
-

if(x) - f(0)1 = lix1 -01 < er for all x that satisfy the inequality

Ix - 01.< 5 ? If x > 0 we wisIrto satisfy 1x1 < e whenever'-x < 5 _while

if x < 0 we wish to satisfy 1-xl < whenever -x < S ; in either case,

the Fhoice 5 = e clearly is sufficient to hold lx1 within the tolerance

e and establish the continuity.

EXample 3-5b. From the graph of the integer part function f : x

(Figure A2-1d) we expect to have discontinuity at the integers and continuity

elsewhere. This is easily verified. If a is not an integer thep.

f(x) = T.aenever (a] < x < [a]-+ 1 . Let 8 be the distance frcir a

to the c3.osei- of the two integers [a] or [a] + 1.. If Ix - al < 5 -then

1[x] - [a]l.= 0 which is less than any error tolerance 5->0 . - On the other,

hand, for an integer n we have f(n) n and f(x) = n - 1 for

n - r < x <,n . Consequently, if E < 1 , then no matter what neighborhood

of n is taken there are always values of x on the left of n within the

neighborhood for which
-

c

and the criterion of Definition 3-5 cannot belItisfied. (Note, however, that

the function g(x) defined-on the restricted domain h < x < n + 1 by

g(x) = ix] is continuous a each point of its domain )
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Exercises 3-5

1. Use the formal definition of continuity to show that each of the

following functions is continuoudat x = 1

(a) f : x -- 3c -I- 1
x- + 1

tb) g x -- 4x2 - 3x - 1
x + 2

(See_Exercises 3-3, Nos. 41:1 and 4g.)

2. For what value of x is.each of the following functions discontinuous?

Justify your answer.

.(a) f : x
. 2

(b) f : x x + 1

3. Whith of the following functions are discontinuous at x

your answer.

(ElY f : x
x 1,

x3

1
(b) g : x

1 + x?

,.
e, !

1 . INTc) h : x --o- , _ , , _.-'..4..

.1,
' \ lL 1 L x`. - - q

1- l 1
. .,- ...

4. 'Discuss the points of discopti.nu:ity of f -: x '1-A-
., , ..,

. ! (See Exercises 3-1, NQ. 1.Y , -----1-'-'4.4 :4 c 0 ' ,d

fl 5. Prove that f -: x ---"-.- xy- ,[xi -"gs continuous for:every x which is
0.

not an integer and
%
ditcontlnuous for integral values of xq

Q
t

,

6.. For ea 4h of the following funttons define a new funCtion which agrees-'
,"--- . ... -/

with the given one for x 0 a and is continuaua at x = a . ,
_

= -1 Justify

( a )_ f : x
x3- 1

12 ,x - 1

X?:-- 4
(b) f= x , .a = 2

t - 8

f :

(c1}.. f :

(e)

X - x= - 1
,=

1.'
a

a = I

(x - 2)\(71-).-c 1)
?z

- x + x 2

I

= 1

inteizer.

96 :0-
o

%J.

10

:-



7. For each of the following functions, if possible, define a new function

which agreeewith the given one for x / 0 and is continuous at x = 0 .

If this' is not possible, state wkiy.

1(a) f.: (c) f. x

(b) f : x (d) f x -41. x -

8.

11, 9-

10.

For

with

x =

(a)

(b)

For

(a).

(b)

.(c)

If'

4 ..

each of the following

thg given one for x

a .

+
f

functions

/

=

,

f

of

values.

show that no function which agrees

a can be so defined as to be continuous at

a = -1

.

- c_Lf/

overthe cldsed-intervals [-2 , and

.f(x) asx-x---...approximates 0 by positive
7

f for x 0 and

Jc= 0 7.

chose domain is the set of all real

: x a1 - x

+ 1
g x

x + 1

x let f(x) =

Sketch the graph of

, 2]

Describe the behavior

values; by negative

Can you define a functionwhichsgrees.with

which is continuous at

f is an increasing function

numbers, and if f is not continuous at a , what can you say of

lim If(x) - f(a)! ?

-For° every real x , let N( ) denote the number of distinct real
..--

square roots of x ., i.e the number of distinct real solutions of

y2 = x . Where does NNhaire limit? What is t limit? Where is N

ucontinous? Let P(x) = (N(x) - 1)
2

. Where does P have a limit?
.

.., >
What is the limit? Where is P continuous? How does P differ from

the .function _f :

.x
---.- 1 ? from the function g :

,

x x
?

x

4r 97
,a0



3-5

12. Each of the functions flg,and h, is defined for all real x.

the functions is not continuous at 0 ?
-

3

0 , x rational

1 , x irrational

0 , x rational

x , x irrational

)1 , x rational

-1 , x irrational

13. Give an examaole of a function which is not continuous at 0- but whose

absolute value is continuous at 0 .

Al11-. (a) Show that the function f of No. 12 is periodic and determine

all possible periods:

(b):- Show that every noriconstant periodic function which is continuous,

A 15 . If

at least at one point, has a fundamental (smallest) period.

f(x) =
rational; x = 2:(p ,c1 are relatively prime)

0 x irrational ,

show th'at f is continuous for all irrational x , and discontinuous

for all rational x .

1)1

.07

O.

9

1 0
5

r

,
-se



3-6

3-6. Properties of Functions Continuous at a Point. .

(i) Rational combinations of continudES'functions. We have proved that

the elementary rational operations arc preserved by the limit process: that

is; that the limit of a sum is the sum of the limits of its terms; that the

limit of a product is the product of the limits of its factors; and that the

limit of a quotient.is the quotient of the limits of its numerator and its

denominator, provided that the limit of the den ?m±nator is not zero. "'It is

immediate that if two functions are continuous at x = a then so are their

sum, product, and quotient if no division by zero is involved.

In the following theorems, as for the corresponding theorems on limits,

we presuppose that the domains of the functions appearing in a combinaltion

coincide in some neighborhood. of a-.
1

--THEOREK-3-6a. If the functions f - and g are continuous at x = a ,

then so is the function h defined by h(X) = f(x) + g(x) . That

is, the sum of two functions continuous at a poin-6 is also continu-

ous there.

Proof. From Theorem 3-4c on the limit of a sum and from the definition

Of continuous functions we have

lim h(x) = lim (f(x) + g(x))

lim f(x) + lim g(x)
x-a x -a

= f(a) + g(a)

= h(a) .

n

444

In precisely the same way, we obtain the following theorems.

THEOREM 3-6b. If the functions f and g are continuous at x ,= a ,

then so is the. function h defined by h(x) = f(X) g(x) . That
c-

is, the productoftwo functions continuous at x = a is also con-

tinuous there.

1 LI
99
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THEOREM 3-6c. If the Lunc-tions f_ and g are continuous at x = a ,

and if g(a) , then the function h , defined for g(x) / 0

by h(x) = f(x)
g x

is continuous at. x = a In other words, the

4Uotient of,continuous function's -is continuous if no division by

zero is 'involved-

.

From these results it can be proved that any rational cOmbination of

continuous functions is continuous Lit points here the denominator does not

vanish. In particular, since con stant functiLs are continuous (Theorem 3-4a),

it can be proved that any :4--'7 combination of continuous functions is con-

tinuous. We have already .hat every polynomial is continuous
4

i(Corollary tc, Theorem 3-4d,, -ce, every rational function is continuous

except when the denominator is zero.

Cr

Exercises

1. Prove that f :

2
is continuous at x - a , where a is any

real number.

2. (a) . ove Theorem 3-611sinE the limit, tneorems as In the proof of

orem 3-6a.

(b) Prove Theorem 3-6c in tr-e «L,

3. Prove Theorems 3 -6b and 3-E2 z1-7-ect1 y :Definit:Lon 3-5.

A 14. (a) If the function f a cc -inuous at x = a and the function g

is not continuous at .x = a , a'now tat f g is not continuous

at x = a .

(b,) -Can f g be continuous at x = a Lf nether f or g is

continuous at x = e ? Illustrate your answer by giving an example.

(c). Repeat the above using f. g for f g .

5. Determine where the .fun,function f.: + 14X-7-IRT is continuous.



(ii) Continuity and differentiability. The functions which concern us

in the calculus are usually continuous, but we shall generally not have to

Prove continuity as an independent fact. If a function is differentiable at

ayint, it is also continuous at the same point.

THEOREM 3-6d. If the function f has a derivative m at x = a , then

f is continuous at x = a.

Proof. We are given that

lim f(x) - f(a)
x - a

x -a

Ftrthermore,

Using Theorem 3-4d, we obtain

lim (x .a) = 0 .

x-a

lira ((x) - f(a) = lira [f(x)
-

f(a)
(x - al

x ax-a x -a

"'
f(x) - f(a]

x - ax-a x-a

= o .

Finally, from this result and Theorem 3-4c, we have

or JO

(f(x) - f(a) = lim f(x) - lim f(a) = 0
x -a x-a x-a

lim f(x) = f(a)
x-a

Therefore, f(x) is continuous at a .

-re

We have already proved (Ekample 3-3f).that IR has a derivative at a
for a > 0 . As a consequence, we have

Corollary. The function f :

. a > 0 .

-... IR is continuous at x = a for

)

101 1.1).:
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....

,
'Mali:relation-between differentiability and. Contln sy'i,a one-way-

-.,

affair: a. _function mgy be, continuous -at a point w3thoutg differentiable
-...

.---

. ; .

there. - l

I 'Z.:,

It is easy-to supply an example.
.

.

.4_7 -
q

EXAMple,.3-6a. In Example 3.--5a we demonstrated tkat: f = x ==.111.: 1)1 is

continuous when x = 0 . Doe s it haVe a derivative at x = .0 ? 'If we examine

the graph (Figure A2 -lc), it seems most unlikely, because such a derivative

would assign a slope to the graph of -f at the origin. The graph consists

of two straight lines having the slope's -1 to the left and +1 to the right

of the point, and it appears meaningless to talk of the direCtion of 'this graph

_ .at the point. The proof that lx1 does not have a derivative at x-=.0 is
.-..

left to you as an exercise (Exercises -6b, No. 1).

a--

.(171i) Composition of functions., The formation of,rational combinations

is one of the principal methods for the contruction of more complicated ,

mathematical functions from -simpler-ones,- and we have proved that In general. 5

the existence of a limit and the-iproperty of continuity are preServed by

rational combination. In the same spirit we now examine whether the, existence

of,a limit and continuity arepreserved by, composition.

Example 3-6b. Let f(x) = (1 + x)12 , g4x) = , and h(x) = cos x .

We have many possible compositions of f , g , and h , such as

(1) gf(x) -

( 2)

1
1

1 + *) /2 ;

(11 2fgh(x) = cos X

(3) gg(x) =
1

(7)

In composing functions, we must pay careful attention to their domains.

Thus,in (1) of Example 3-6b, although x = -1 is perfectly satisfactory-for

the evaluation of "f(x) it is not permissible for the evaluation of gf(x),

since f(-1) = 0 is not in the domain of g . In a more cortlex'composition

such as (2), the difficulty may be somew t disguised. Here we cannot choose

any point x for which -1 < cos x < 0 i' for example, 2 < x < 7.c or
7rx < 3-
2 cos x. For if x lies in such an interval then < -1 but

the -domain of f is restricted to numbers not less than -1 . Even such an
\

102
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elementary composition as (3) may have hiddin-dangers: we are tempted to say
__, -

that gg(x) = x , but strictly speaking the composition has the valu*.e x only

fda- x 1 0 , because' g(0) is undefined and, therefore gg(0) is meaning-
,

less,

We shall consider functions which can be built up by successive composi-

tion. For such functions, we shall obtain a general theorem (under certain

restrictipns to be 'stated); namely, that any function constructed by suCces-

viire compositions of continuous functions is itself continuous. It is suffi-

%cient to prove the theorem for asingle composition.

THEOREM 3-6e. het g be a function continuous at ose range is contained

in the domain of f . If f ,is continuous at g(a) , then 'the com-

posite function -x fg(x) is continuous at a .

that

for

Proof. For any tolerance e, > 0 , we can choose a control - a > 0 such

C. .

if(u) fg(a)1 < e

lu g(a)1 < a ,

since f

that

(1)

whenever.

(2)

e

is continuous at g(a) . In particular, for u = g(x) , i-e. follows

Ifg(x) - fg(a)I < e

ig(x) - g(E)i < a .

We now regard a as a prescribed tolerance for the approximation of g(a) by

g(x) , and because EL:. is continuous at a , we can choose a conti-ol. 5 'such

-
-

that (2) holds fez all x in the domain of -g'"satisfying

Ix - al <S .

Since (1) holds for these values of x the composite function is continuous

at a

7

103



3-6
1.

.

1
''

Example Given f(u) = under the val14.-assum '.thatu
g(x) = sin x is continuous for all x', we want to find all,the,discontin-

,ulties of fg (the cosecant functions) . We may'eliminate.ftom consideration
all pOints where Theorem 3-6e is valid; that is, all points x where g is-

/

continuous and for which f is continuous at g(x) . .The function -1g.

imposes no restriction on the domain of the composite function since it is.
, ,

continuous for all x .-, The function f is continuous except when.'u = 0-;
here "f is-undefined and consequently discontinuouS. Thevalues x` for

g(x) = 0 will be points' of discontinuity -because.thecompoSi-
S

tion7is undefined there. .We conclude, that the'cosecant function iiddScontin-
uous for x = 0 , ± 2n ,etc.--in brief whenever x is an 'integral
multiple of n .

(iv) Continuity of the inverse function. From_the geometricial'relation
between the graph of a function and its inverse it may seem evidenthat cop-
tinuity at a point of the domain of the function implies continuity, at the
corresponding point of the graph of its inverse; that is, if f -is- continuous
at- a then its inverse g is continuous at) t = f(a) . This statement is_
not quite true but the result can be assured by requiring an eAre0condition:

Our geometrical intuition corresponds more closely to the concept of-
continuity on an interval (Section 3-7) rather than continuity at a point. If
continuity at all points of an interval is violated, curious behavior is pos-sible. For example, the function f given by

x , for x >0 and x rational
f(x) =1

-x , for x < 0 and x irrational,
.'5
is continuous and one-to-one. Nevertheless, its inverse is continuous nowherebut at 0 = f(0) .

THEOREM 3-6f. Let f be an increasing (or decreasing) function and let-
.g be its inverse. If f is continuous at a then g is continuous

at b = f(a) .

Proof. Since f is increasing the existence of the inverse g ismot'
at issue (s'aeA2=4). To prove. continuity of g at b we need to establish

things: (1) every deleted neighborhood of b contains'points 6f the
domain of g ; (2) giVen any e-neighborhood of a = g(b)the function g
maps all the points of its domain some.s-neighbOhood of. b into the
e-neighborhood of a .*

a
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Since f is continuous at a , for each neighborhood I- of b f(a)

there is a neighborhood J of a wherein f 'maps the points of domain

into I . Furthermore, aqy such J contains points of the domain of f other

than a , and since the mapping is_one-to-one it folloWs that I contains

points of the range of f (Which "is the same as the domain of g) 'other

than b .

We-now have .-o cases to consider: either there are points of-the domain

of f within the etneighborhood of a on both sides of a or on only one

side. If there are such points u , v on both sides of u < a < v ,

let 5. be the distance from b to the cjo6er of the points f(u) or f(ar);

5 = min(lf(u) If(v) - .

Since the mapping g preserves order (or reverses order when f Ys decreas-

ing) it follows that the part of the domain of g within the 8-neighborhood

of b is mapped into the e-neighborhood of a . Thus we have found a 5 for

each e and continuity is proved. With slight modification the proof also

applies to the one-sided case.*
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Exercises 3 -6b

-1. Prove that f : x lx1 does not have a derivative at x = 0 .

A2: Let f : x----,-.., where n is a positive integer.
;... ,,

.2. (a) Use the binomial theorem to expand (x ± h)n .
...

(b) From the result of (a) derive a formula for
I 4

f(x + h) - f(x)

(c) From the-resat of (b) deduce that

m = f(x -1- - f(x)
-

n-1
nx

h,0

State which limit theorems you are using.

(d) Use Theorem 3-6d to show that f is continuous at x = a , where
a is any real number.

Let f(x)
g(x) x

1
, and h(x) = sin x . Describe the domain-

of the function given by

(a) fg(x).

(b) gf(X) .

(c) hg(x)-.

(d) gh(x)

(e) hfgx).

44-. ',Assume that the functions - x sin x- and x --...- cos x are continuous \-
for all x Find the discontinuities of the functiot given by

(a) f(x) = sin 1

(b) f(x) = tan x .

(c) f(x)
4 - 3 sing x

(d) f(x) = sin cos-k .

2
1

(e) f(x) = tan xx 1

1, A' (f) f(x) = tan co-S-2- cos tan x .



Prove, if

function

lim fg(x)
x-a

\

Elnd
(''Glim g(k) is

8 Z,1144_i_ as e'1"%roaCiae°
x,a .

= '1*(471 6(X))"'
r(h)

x-a

A 6.. Prove that if iim f(x)

,

kna

then the

a azid

g( x)
trtentol

P-11°

3-6
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. PropertieS of Functions Continuous on an interval.

(i) Ebctreme and intermediate value-theorems. 'We. are interested in
curves, in motions, in processes which are continuous, and we wish tO repre-
sent them by functions. Thqrefore,we are interested5n functions which are
continuous not merely at one point but at every point of an interval
Subh a function is said to be continuous on the interval I . Since the con-
cept of continuity at a point given in Definition 3-5 is a local property of a
fLotion--a property which is determined 133/. the values of the function within
any neighborhood of the point, no matter how sm/4_11--it is not at all obvious

that the properties which intuition would ascribe to functions continuous on
an interval can, in fact, be derived from the definition.

Many aspects of our intuitive picture of continuity are.implicit in the
precise definition. For example, we may think of the graph of a continuous
function f passing through points (a,f(a)) and (b,f(b)) as the path of
a walk over hilly terrain (Figure 3,7-a):

(a,f(a))

Figure 3-7a

It seems clear that such a path in passing from the elevation f(a) to f(b)
must paSs through every elevation between. Form.1.1y, this idea Is.expressed
by the folTbwing theorem:
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,THEOREM 37a , (Atermediate Value Tgeorem). Let f be continuous on the

closed inteal a . Let v: be any number between f(a) and

f(b) . Then there exists' some value u iii the interval such that

f(u) .'v .

Again.b. intuitively:, there is at least one point on the path (possibly an

end point) where the highest elevation on the interval is reached and another

(or,others) where.the lowest elevation is reached. This property is expressed

formally in the following,theorem.

Tti.t,OREM 3-7b. ,(EXtremp-Value Theorem). If f is continuous on the closed

interval a < x < b then 'f has a maximum and a minimum in the

interval. Specific/4.11y, within the interval, there exists at least one

value for which f(xm)" is the maximum (f(xM) > f(x) for all x

'ontheinterval),Euldatleastonevaluemfor which f(xm) is the

_ minimum f ( x ) < f(X) for all x on the interval).
m-

The restriction to a closed interval is essential in Theorem 3-710; e.g.,

the function given by g(x).= x .on the open interval 0 < x < 1" has neither

a maximum nor enimimum in the interval. The same remark applies to the func-

/-Ntion given by h(x) = 1 on the same interval.

Iff(xm) is the maximum of f on an interval, and f(xm) the minimut,

then from the intermediate value theorem it is clear that f takes on every'

value between f(x1) and f(xm) on the interval between and xm .

Bence we Can cambine the extreme and intermediate value theorems in a single

statement:

. . .

Corollary. On a closed interval, the range of.a continuous function
a

contains a maximum,' a minimum, and all values between.

This statement CZN be put more briefly as follows: A continuous function;
4 .

maps a clo.ed interval onto a closed interval. The upper and lower endpoint's

of the image interval are,, of course,-the maximum aneMlmimum of the funat'on

values.

It would require a substwatial digression to prove these theorems.in all
o-

generality; the proofs require a more lengthy exp2.9i-ation.Into the prOPe
2
rties

of real numbers than is spprgpriate here. 'Forchose interested, this material

Is relegated to Appendix 4.

JP f
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FOr increasing or decreasing functions

equivalent to the property of the preceding

THEOREM

dcMaih-of

range of

if the

the:proPerty of continuity is

corollary, namely,

.

Let f . be an increasing (9twdecreasing) functipn and let the
f ,be' an interval ,,1 . :1If-_S is contintfoils on I then the

4..:_..

.f is an interval (by.preceding!corollary), and/conversely,
t

f is an interval, then- is continuous.

'..7.\

goof: '.For ,the proof of the Converse_we s3 w that if f is monotone aa
the range. R of f is in an interval then' f is continuous. Let xo be an

. .4--interior point of I . 1-.1nce. f 'is monotone and R, is an interval, f(x )e 1 o
is an interior point of .R . Consequently,' for any sufficiently small e the

range of

values f(x0) - e' and f(x0) + e. are in R ; that
c and d in I for which f(c) = e and
f is monotone, if x/ is between c and d
f(x0) - c and f(x0) + e Hence to assume

if(x),- f( )1 < e

it suffices to require.

-

Ix - x01 < 5

where eb ='minllx
°

- c( , ixo .

A slight modification,of this arumgnt_suffices to prove the result where
x
o is an endpoint of I . Here lie' give an illustration. In Figure 3 -7b(i)

Jel there exist points
4

f(d) = f(x0)+ e 'Since

f(x) is between

t

1--we' depict the graph of a continuous monotone 'function f : x---g.(x2 - 2x + 3)
fors 1 <x < 3 ; in (ii),the graph of a discontinuous increasing function g
given by

0

g(x)

1 2
2 (x - 2x + 3)

(x2 6x + 3)

1 <x <2'"

2 < x < 3

In both cases the projection of the graph on the x-axis, the domain of the

function, is the interval 1 < x < 3 . For the continuous function fie:%the
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Figure 3-7h

projection 6h the y-axis, the range of the function, is an interva/,
7'-1 <7y < 3 . For the discontinuous function g the range,consi_of two

separated intervals, 1 < y < 3 5and y < 3 . This situation typical.2

In the preceding theorems we haveienoe' that the fopal definition of
continuity on an interval does agree with various aspects of the intuitive con-
cepion of continuity. Yet, it i5 important to know that a precise, formal
definition does not necessarily correspond in every respect to the intuitive

idea from which it springs. The idea of ciontinuity'is a particularly revealing
. -

example. You have seen. that continuous fitimetion need-not have a derivative

at every point of its domain xl).. It is not obvious, but it is
true, that there are functions continuous on an interval which do not have a

derivative at any point of their domains. If yoil think of functions in terms
of graphs which can 1) platted, then this fact may be surprising certainly
no pen can follow the infinitely_sinuous wiggles of such a grap The presen-

tation Of such functions by the 19th century mathematician Wei rstrass was,

in fact, a definite shock to the mathematical world of his time. (An example
of such a function is given in Appendix All-L3 )

-In the eal.ly 19t3S century, mathmaticians evidently believed
that a continuous function mu't'also have a derivative, except
perhaps at isolated points. part this feeling probably stemmed
from the earlier concelist of unction as a relation defined by a
forma/ expression; the Uea of function as we know it-(then called
"single-valued" funAion) had not been thoroughly explored. The
formal expressions familiar tb the mathematicians of that time

owould not be likely to suggest the peculiarities of nondiffe-i-entiable
continuous functions. In /872 Weierstrass proved definitely that .
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a certain function was just such a nondifferentiable continuous
function. mere. is a persistent misconception that the mathe-
matical commranity was deeply shocked by the example of Weierstrass.
In fact, in 1834, thirty-six years prior-to the paper of

Weierstrass,B01zano
, 2 gave an example of such a function. How-

ever, Bblzano did not completely prove that his function had all
Of the required story of the rediscovery of

Bolzano's example and a proof is given by G. Kowalewski.
2 According

to_ Weierstrass, around 1861 Rie-,Icann/also propOsed,an example of such

a function.3 ,Welerstrass found it too difficult to verify that the
example of Riemann is co-l-rect, and it is unclear whether Riemann
was able to verify this. Thus-Weierstrass was the first to prove
thata specific example actually was nowhere differentiable.

In Section A4-3 we present an example of a continuous but
nowhere differentiable function whose properties can be demon-

)

strated by tla e most elementary means.

.14

fr,

1. C. B. Boyer, Concepts of the Calculus.

2. G. Kowalevski, "Uber,Bo1zano's Nichtdifferenzierbare Stetige
Funktion." Acta Mathematica, 14k. 1923, pp. 315 -319

Weierstrass, Werke, Vol. 2, pp. 71-74.
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Exercises 3-7

3-7

1. Exhibit a discontinuous function for which the range of the function
Is an interval.

2. On which of the following intervals is the function f sin x
increasing? decreasing? In each case locate the maximum and minimum
values of any.

7 (a) ( g)

(b)
2 1iNrci

(c) {-

(d) C- ,

A 3-

(e) -1r ,v)

Prove that f x- is increasing for x >0 and ranges over the
positive reals (n rational).

t. (a) Prove that x f x is continuous and inci-easing,whereve
f is positive, continuous, and increasing.

A(b) Prove that x 3/f(x) is continuous wherever f is continuous.

5. Prove that lim
X.-+0

"17777T 1577:7T -

6. Assume ghat f : sin x is continuous for all x in [-

(a) Prove that_ f is increasing. Hint:, :Use the identity

sin'y - sin x = 2 x) co

r 7C.and consider as separate cases the closed intervals [- 2"

(b) Show that the range of f is an interval. Show that the domain of
the inverse of f is an interval.

113 1_ 2 i...
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7. Aseume that

interval [-

< < n7x

number?

the function x---0-.tan x is continuOus-on the closed

141 'and sh014that there is some\lnuodber x where

such that tan x = . Can there be)more than one such

A 8. Prove that if f" is continuous on the closed interval [a;b] and all

values of. f are in [a,1)], then there is an -x in [a,V) for which

f(x) = x .

9. In which of the following intervals does f : Ix! have a maximum?

a minimum? Justify your answer.

(a) -1 <x <1

(b) -1 < x < 1

-1 <x <1
-1 <x <1(a)

10. Shoe that the equation x + x - 10 = 0 has at least one solution

between x = -2 and x = -1 and obtain an approximation to the solution

1
'within a tolerance of 2

'11. Isolate each real root, of the given equation by eihibiting an interval

containing this root and no others. (Each equation has four roots.)

- x3 - 9x2 eX 4- 14 = 0

(b) 2x4 2x3 - 3x2 x 1 = O.

12. (a) Show that the equation cos2 x = )71. has at least one positive

root x , where x <

(b) Find the maximums and the minimum value of f : =

on the closed interval [0 S.]
2

A13. Prove that if p(x) is a Polynomial of odd degree (with real coefficients),

then the equation p(x) = 0 has a real root.,

14. Prove that the equation xn = a has exactly one negative root if n is
-

an odd positive integer and a < 0 .

15. Sketch the curves y = x
n

and y = x
1/n n = 0 , 1 , 2 , using

the 'same set of axes.
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16. Prove .hat if f is continuous and has an inverse on'an interval then

'f is stmongly monotone on the interval.

17. The tempera:ture,at any point of a thin circular ring is a continuous

function'of the point's position. Show that there is a pair of anti-

podes (points at opposite ends of a diameter) having the same termpera-

ture.

18.- Sketch the graphs and determine how many points of discontinuity there

are in the interval [0,17r] of the following function*

(a) f xj

(b) sin x)

(c) f : [a-sin x] .

AA19. If f is periodic with periods 1 and 17 (i.e., f(x) = f(x + 1) and

f(x) = f(x + -./F)) for all x , and if there,is at least one point of

continuity- of f, , show that f Fast be constant.

A20. If g is continuous with g(0) = g(1) s= 1 and, in the interval [0,1] ,

4g(x2) = (i(x)) 2 , shoW that g x) = 1 in [0,1]' .

21. The real roots of the equation x + b =1:]Q a.positive integer)

can be "determined' by finding the i' tersections of the curves

and

n
Y = x

y= -ax - b .

Verify the following table for the number of real roots of

x
n

+ ax + b = 0 .

b > 0 , there are two or none,
(a) If n is even, and.

b < 0 there-a:re-two

a > 0 , there is one,
(b) If n is odd, and

a < 0 , there are three or one.

Give numerical examples to illustrate each of the four cases..
,
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Chapter 4

DIFFERENTIATION

4-1. Introduction.

The value of the concept of derivative is greatly enhanced by the sim-

plicity of the .techniques for computing the derivatives of common functions

and functions constructed as combinations of them. In this chapter we shnll

find the derivatives of powers and trigonometric fUnctions- and show how to

obtain the derivatives of functions obtained by rational combinations, inver-

sions and composition of functions with known derivatives.

'.By the definition in Chapter 2 the derivative of a-function .f at B.

point x is the limit as z approaches x of the ratio

r(z) - f(z) f(x)z --x

From this we obtain the function

which has-

f : rX 34m
z-x

f(z) - f(x)
z x

as its domain the subset of t4le domain of f for which the limit

exists. The function ft' is called the derivative of f ,*that is; the

function derived-from k .. Thus ft(x) is the slope of .the .graph of .f

the point x

It is convenient for.the pdrposes

nator in the expression for r(z) wit single letter h We replace z

by .x h and obtain

of computation to replace the denomi-.

fqx) . lim f(x h)
f(x)

4Then we are concerned with specific functions like x2 or sin x , the

notation ft(x) becomes somewhat awkward and we shall find it convenient to

u4e the Prefix. Dx . Thus, for

2
and g : X sin x

ti
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we have-

ft(x)-= Dxx2 and ELI( ) = Dx
sin x,.

The subscript is usually omitted when its reference is clear,

Write Dx2!' and D sin x , butlwhen there may be doubt, we

subscript, e.g., D
127x + z---TE

.

Example 4-1a. For f : x2 we have

1.
Consequently, by-the Corollary to Theorem 3-4c, we have

f(x + h) --f(x) (x 4- h)-2 - x
2

= 2x + h) .
- h

Ft(x) = Dx2 = lim
f(x + h) - f(x)

hf.0

We list for ready reference the few derivatives which

easily fram examples here and in Chapters 2,and 3. It will be

of a catalog of functions whose derivatives you should learn.

the -catalog in the following sections.

I

3

We shall usuelfy

shall always use the

are given or follow

the beginnigg

We shall add to

.Dx0 =.0 a donstatt.

(2) Dx = 1.

(3) Dx2

(1) D,rx = 1 .

(5) D(x) _

118

1 , x > 0 ,

(6)- =
1 x < 0 .
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Using the defilliti-On

(a) 2x2 - x + 4

(b) 1 - x3 .

(e)
1

(d)
1

X2

(e).- x3 - 3x-+ 14

(f)
1

x b

(g) ax2 + bx + c

(h) Ix - 11

(i) ax x

2. Given the line

3.

or the

32c+ 2

Exercises 4-1

derivative, find. f'(x) , where

, find
(-2,-4) and (2,8) -

If f(x) = 1 + 2x - 2c2 find the

corresponding. to:

(a) x'= 0 -- (c) x = 1

(b) x = (d) x = -10 .

If f(x) = x3 4. 2% + 1 / fizzd ail x such that

(a) f'(x) = 0 ,c) fl(x) = 4

(b) f' (x) = -1 . (d) ft(x) . 20 .

gy

its slope at

slope of th6

f(x) equals:

the points (0,2)

graph of f at points!

%IN

41.



4-2. Rational Combinations.

We can extend the list of known derivatives greatly by considering

rational combinations of differentiable functions. We need consider only

three basic kinds of combinations, namely linear combinations, products, and

quotients.

Linearity of differentiation.

.

ThEOREM 4-2a. (Linearity of- differentiation.) If f and g are both

differentiable at the point x , then for anyconstants 'a and b

we ha-vex.

Vb .

D (Lf(x) + bg(x)) = a Df(x) + b Dg(x).

Proof. By linearity of the operation of

Theorem-3-4c) we have

lim
(af(x + h) --'af(x) bg(x + h)

h--0

= a lim f(x h) f(x) + b lim g(x
h-O h-O

= a Df(x) + b Dg(x) .

taking a limit. Corollary to

Example 4-2a.

h) - g(x)
h

D(3x2 + 21 = 3D x2 + 2D-47 - D(1) = 6x t 1 +
1
2

1. Evaluate

(a) ' D(41x1

.(b) D(5x2 +.)7c)

(6) D(17x1

(d) D(laxl

Exercises 4 -2a

3 1x< .

2x - X

- 1bx1), a > 0 , b < 0

2. Consider .g:: +21- '13 - xl

(a) Sketch the graph of

(b) Define gcx4. explicitly in

(c) For what values,of

terms of linear functiansIfor all real x

x is the derivative not defined?

120

G



43. _Considir f [x] ([x] is the integer part of x , defined in A2-1.)

(a) Find f1(x) if it exists, at each of the values x = -2.8 , x = 0.6 ,

x.= 2 .

(b) Find thedomain of thdderivstive V .

4 Consider f x x - [x]. .

(a) Draw the.graph of f .

(b) Find f'(-1.5) and f'(2.3) and describe the domain of the

derive. At

5. Extend Theorem 4-2a to a general linear combination of functions

0 : x - c1f1( ) .+ c2f2Cx) + + cnfn (x) .

For each of the following functions, find the .derivative and describe.the

domain of the derivative.

(a) 'f 1x2 21

(b) f xr.[2x2

(c) f : +

(d.) f : + li]

(e) x sgn(1 -45E)

-(f) 41xl)

Gia f : max(x3, 2x231

(h) f : - 1, 7))

7. Right-hand and left-hand derivatives are definel in terms of right-hand

and left-hand limits (see Exercises 3-4., No. 16) as follows:.

Right-hand derivative: 16''f(x) =
+ h) -,f(x)

h-0+r
Left-hand derivative: Df(x) = lim f(x + h) - f(x)

,h-0- h

In particular, = Dr1x1 = 1 , x> 0 ,

= 121-11 -1

tlkl =

x < 0 ,
X = 0 .

(a) Show that D I x5 = Dr'lx51 for all x .

(b) For what values of. x does Irlx3 x3 - 21 ?

(c) .Show that a function is 'differentiable at a point if and only if it

has equal right hand and left-bend derivatives at the

121



Derivatives of products.

THEOREM LL -2b. If the functions f and g are differentiable at x , then

the prbduct function .

: x

has the derivative at x giver by

..F7(x) = f(x)g'(x) + g(x)f,(x)

Proof. Fro the defizg.an of F Ndhave

F(x + h) - F(x) f(x + + h) - f(x)g(x)
h h

f(x + h)g(x + h) - f(x + h)g(k+ h)g(x) - f(x)g(x)
h

h)g(x h) - g(x)
g(x )

,f(X + h
h

) - f(x)
h .

Since f

sae have

is differentiable at x is continuous there (Theorem 3 -6d) and

lim
h- 0

lim

f(x

lim f(x + h) = f(x)
h-O

lim g(x) = g(x)
h-0

+ h) f(x) f=(x)

g(x + h) g(x)
-
. :gi(x)

It fcillows fiOin the theoremS oii limits .I(SeCtiOn, 3,4)

1
F(x + h) *- F(x),

h-0 r
h 'F'(x) f(x)g7.(x) +

Example 4-2b. Dx3/ D(x.-1) + c Dx

1 + 16-c

i/Tc.-V7' + ='11/X.
2 2

that

g(x)f4(x)

Corollary. If f' exists and if F(k) [f(x)] ,

F' (x) = 2[f(x) ] D
x
f(x)

2f(x) f' (x) .

then

The proof is left as ari.exercise (Exercises 4-2b, No. 3).



Exercises 4-2b

1. Find the derivatives of the following functions.

(a)

(b)

)

x(2x - 3)

(4x - 2)(4 - 2x)

(x2 +, x 1)(x2.-,x + 1)

(a) )/R(ax + b)3

(e)
1

. 13-c

(f) .7c - (5x +:2)

(g)
ix( x2

(h) x7/2 , xf 0

(1-) 3x
4

-
1 \

fcc

3x2(xa 5)1
(k)

ii1.13.X2 x41

(1)
15x2 x41_

2. Evaluate

(a) D(3x2-+ 5x - 1)2.

(b) D(3 5x)3 . 5

(C) -D(3

(d) 4C(IX. 1)2).

(e) DI(x +

x3/2 . 1/ -1/2
14(f) .1)( x + x ) (dint: x

1/2 1
= YX) .

3 2

2

(g) D(447 2,67 .

(h) Dax2- -1] (x2 - 3x + 3.))-

(i) D(x([x 11.- 1))11 an integer.

Prove the Corollary to Theorem 4-2b.

4-2



fi

4. Find th'1-.31.isted derivative by two methods; first, expand and then

differentiate; second, use the product formula. ..;

-(a) D(x2 + 1)2

(b) `1)(x2-(x2 + 1)2)

(c) D((x 1) (x2 + 1))

(d) D((ax2 + bx + c)(dx2 + ex +

5. Find the derivatives of each of the following functions in as lays

as you can and describe its domain (LO not overlook the definition of the

derivative.)

(a) f x

(b) f : x ix!2

(c) f : x

(d) f : x4x12

(e) f

-,

(f) f : x Ixl[x]2

(g) f : x.-x[14- - x2]

(h) f : x---...x rnaxi x y 2 - xl.

(i) f : x--- x[x] I XI

(j) f : X----°'[IXI]- HEX]i

.14

The corollary -tai Theorem 4-215 may be extended, to any 41.g.her integrge.1

power of a fdnction f as indicated In the exercise's, Ex6cise: 4...2c. We

state it here for completeness.

124
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THEOREM 4-2c.' [Power Rule for Positive Inte

if F(x) = [f(x)]n , then

F' =-n[ f(x)]171'ft(x)

for any sitive integer n .

c.. If F(x)'=-(3x - 2)-5 , ,then

F''(x) = 5(3)c:- 2)4(3)

= 15'(3x - 2) 4

I
.-'"--4 Corollary 1. If G-( x) xn ,,then G' (x) = nx11-1 for any positive

Y= .e.xiats, and

integer n .

The proof is left as an exercise..

Since a polynomial

p(x) = a
0

+ alx a2x2 + + a x
n

4-2

is a linear combination'Of powers of x., Theorem 4-2a and Corollary 1 enable

us to differentia

Corollary 2.

any4pelynomial.:
-

A polYnomial function p where

p.-(x)'=- a0
+ a

1
X +-82x

2
+ + an

has a derivative for each real' x given by

pt.k ) =40 + 2a2X7 + + na
n
x.. 1

Example 4-2d. D(44 - 7x2 + 3x,- 2) = 12x2 - 14x + 3 .

Theorems -4 -28 azid 472c enable us to differentiate polynomial functions

of any function -whose deriv tive we know.

2. If p
Dp.(f ( p' (f(xfi(X)

.

is a polynomial and if

1
125
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A

4-2

ExampleA-2e.

(1) D[x7/2 4X5

(2) Dx[(3x -

= 5(3x

= 15(3x

(3) Dx[(x2 +

23 = DP(,/7)7 + 4(IR.)53.

7(i3,F)6 Di7 + 20(,67)4 Di7

= 7x3 1-
Ox

2 1 pt

'MT 2&
x5/2 + 10x3/22

-2)5 + 3(3x 2)4 5(3)(7 - 2)]

2)4(3) 12(3x - 2)3(3) - 15

- 2)4 36(3x,- 2)3 - 15

3)5 - 3*2 + 2('1)70.3

5(x2 3)4(2x.
) 6(t)(- 1E) + 6(-/Z2

, 1+ 6
+- 3 x= 10xtx

2
+ 3) -F.,

1. (a) Prove Theorem 472c..;,'

(b)

(c)

x

Exercises 4-2c

4B,

Prove Corollary 1 to Theorem 4-2c.

Prove Corollaries 2 and 3 to Theorem 4-2c.

2. Evaluate:

D(x5 - x8 + x11)

D(5 X)6 .

D(3 - 2x3)5

D(x - 3x2 +5x3)4

D(x(l - x2)3

3. Consider the curves y

Find two nuOtabe---AN and

at x = 1 and that---. sum

(a)

3

(f) - 5x)2

(g) D(1 - .t.)3

(h) D(3x1/2
4x3/2)6..

(i) Du '7010

(j) D ((3 5x 4.

+1 and

b such

of the

y = b 2

x2)3(1 ;c2)10)

a

that the curves have_the same slope

slopes at x = 2 is 36 .

(b) Find values of a and b such that the curves have the same slope
a

(c)

at a point of intersection.

Sketch th4cutves in part (b) for some allowable values of a an4 b

126
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. 4 -2

4. (a) Sketch the curves Y = X3 , y = -2 for lx1 < 2 .

(b) For what values of x is the derivative g' zero where g(x) = X3 + 3

for Ixl < 2 ?

(c) Zind the discontinuities of g and gi

(d) Using the,results of (a), (b), (c), sketch the graph of g for

-2 < x < 2 .

5. Let u = f(x) , y = g(x) , and' w = h(x) .

(a) Prove that if the functions f , g , and h are differentiable at
x , then

D(uvw) uv)Del(x).+ (uw)Eg(x) + (vw)Df(x)

(b) Can you suggest a way to generalize your result to obtain a formula

for the derivative of a Product of .n functions? Test your conjec-
/

ture with the case n = 4 .

(c) Use the above result to evaluate:

. (i) DC(5x - 2)(3 - 2x)(x2 +. 1))

(ii) DU2x3 - 3x2 + 1)(-A7 + 1)2)

(iii) D[(3 2)(1 - x2)(1 + x)(1 x2))

4

Derivatives of quotients.

We have found the derivative Do) and, by the product rule, can obtain

but we still do not have a general rule for differentiating such

t

functions as

f(x) _ ;.- g(x) x - 2
.÷

1

3

or, more generally-, the quotient of any two functions whose derivatives are

)known. Since the derivative of the general quotient 8f7 can be obtained

from that of t1 product

f(x) (XV.'
)gkx)

we need only obtain the rule for the deriVative of the reciprocal 8.f.,g(x) .

127
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4-2

1THEOREM 4-2d. If F(x) = , then Ft (x)

for which g'(x) exists and g(x) / 0 .

Proof.

at each point x

F(x-+ h) - F(x) 1 1 1
h h g h

- (x +

771
g_Cx.) g

h g(x)g(x +

-1 -11g(x + h) - g(X)]
g(x)g(x + h)

From the theorems on limits and the continuity of g(x) we obtain

Fqx) = lim F(x + h) - F(x) -gl(x)'

h-O g(x)2

Example 4-2f.

f 1 _ -1
-(1) If' fkx/ then fl(x) -x + 2 s

(x + 2)2
7

n-1 -n
(2) "If- g(x) = 2--n- then g'(x) -

-nx
2n -

n4-1
x x x

...-
Corollary 1. If f and g have derivatives at and g(x) / 0 ,

then for the quotient G(x) = g x
we have

Gi (x) g(x)ft-(x) r(x)g' (x)

(g(x)) 2

The proof is left as an exercise._,

Example 4-2E.

(1) If G(x) = , then G'(x) -

128

(x2 + 3)(1) - (x - 1)(2x)
(x2 3)2

3 + 2x - x2

\(x2

D



4-2

(2) We can sometimes_simplify the differentiation of a rational function

by giving it a convenient algebraic expression.

3 2
If =

x + 3x - 2 then f(x) = x + 3 - 2 / and
x
2

2x

fi(x) . 1 + .. .

x'

This technique is particularly helpful when the division can.be

performed rapidly.

(3) Sometimes additiOn helps to shorteff)the work

g(x) =
x + 1 x

1 andx - 1 x 1 x2

g' (x)
(x
2

1) (3) (3x 4- 1) (2x) -3x
2

- 2x - 3
(x

-
1)2 (x2 1)2

46.1

Corollary 2. If R is a rational function, is defined

and if fl(x) exists, then

DX R(f(x)) = R' (f(x)) f' (x) .

The proof is left as an exercise.

1. Evaluate:

-. (a) D(x x 1) .

2
(b) D

x

x(1 4- 2).

(c) D(1 - 1)-1 .

(d) D(3
x2x22)

(e) 771 31)

xercises 4-2d

2. Prove Corollary 1 to Theorem 4-2d.
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3. Evaluate:

x2 5
(

-

1 -
.

(a) D x2 + 5 (f) D
2((

:(b)
x + 1

-
x2 + 1

x2
(8)

D(1, + x
.1

--7----X
--'

1 - ,x
-1

2
(c)

-o- +
(h) D

(1
(ax2

x2) dx + ex + f

x - 1 + bx + c

4 2
(d.) D(1 + T1c)(3i+ 1) (i.) D x

Note: These
(x2

+ x + 1

+ x + 1 " two-reduce to

( e) D (1 -..x + x2)--
(i) D ( 2 + x + 1

+ x + 1 particula.rlyi

1 +.x_+ x2 ,x simple exprea:

sions.

4. Determine both.

D
ax + b)

and D be - ad
cx + d (c(cx + d))-

Explain why both are the same.

Find the derivative of ,each of the following fu.nctions in as many wa,ys-ai

you can and deScribe its domain. (Do not overlook' the definition of

derivative.)

nic
(a), f : x---... (c) f

x - [xi

<
x ,.. i x I

x
: x (x - [x])2

(b) f : x (d') f ---Mc
.-

I x I

6. Prove Corollary 2 to Theorem 1.-2d.

7. Evaluate:

,x.3)2 (x2 x3)14-)7,...

) x (x2 x3)2.

2
(b) D (5(1 ii) + 3

, (1 - -IR)? - )3.

- 1) - 3
(c) Dx,

(Vx -
_s2
) 1

i.

f)8. Consider the quotient r0(x) - where f and
g

haVe derivatives at

x and where g(x) /0 . Obtain the fomula'for the derivative of a quo-

tient by applying 'the product rule (Theorem 4-2b) to the expression.'

.O(x)g(x) = f(x) .

Why does thi

Theorem 4-2d)?

t constitute a proof of the quotient rule (Corollary

13_t



4-3 '-

4-3411,.. Inverse Punctions-Fractional _41411g7,1,
,

The preceding development'can not be applied directly to find the derive-
ve-

tives of such functions as f-: . We `recall (see' Appendix A2-4) that

the number y = mi;&" is 'defined as the principal solution of the equation

n
y- = x

, .

(namely, as the only solution of the equation when' n is odd, and as the only

nonnegative solution when n is even and x > 0). A natural approach to a

discussion of the function f is through the familiar and well-understood

function

g : y yn

The function g is inverse* to f ; that is, it undoes the effect of f .

Thus, if f maps a onto b i.e.,
t.

f : a b

then g maps b onto 'a , 1.e.,

: 4. a .

In this section we shall show in general how to differentiate the inverse of

a function whose 'derivative we know.
1

From"the..property of inverses cited above it is easy to appreciate the

graphical relation between inverse functions. If the point (a,b) is on the

graph of f then the point (b,a) is on the graph of g , and. conversely;
_

i.e., b = f(a) if, and only if, a = g(b) . Since the points .(a,b) and

.(b,a). are located sYinmetrically with respect to the line y = x , we observe

that the graph y = g(x) is the mirror image,-in the line' 3r.--=-x , of the

.graph y = f(x'.) , as, shown in Figure 473a; If the direction_ of the graph

y = fix) at (a,b) is given with respect to the horizontal by the angle

then e also gives the direction of the graph y = g(x) at (b,a) with

respect to the vertical. It follows that the'slope of -y = g(x) at (b,a)
1-is

1
tan( - 6) = cot e'

2 tan 6

1
(pt course, tan e is not defined if e = 0 .) Intuitively, their, if and

g are dff.ferentrable functions and V(x) 0 , we must have

4-=

*
The symbol' f-1 is often used for the inverse of f in other texts.

13
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14--3

(i) gi(b) =

From the figure it is ihtuitive that if f has rivative
at a , then g has a .derivative at b given by(

77

(b, #/

. .../Y --=

.
....

. ..
.

1. #1 ,
14-

_,..

N.

i
4 /

1

10/
1 , e/ ' \ ncE. t# .
,

y = g(x)

e jr

Figure

e proceed to prove this formally as

= f(x)

THEOREM 4-3. Let f be either increasing or decredsing A a neighWhood.

of a . Then on that'neighborhood f has an inverse g If f has

a.derivative at la and ft(a) / 0 , -g. has a derivative at

= f(a) and

g2(b)

I JCs /
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1-Prbof. Op the gbo f is one-to-one and hence
,

inverse 41-which Is ;continuous at I; by Theorem 3-6f. To
existence and value of the derivative

limit as y approaches b of

of g at b-

has a one-to-one

investiga-Ce the

, we must consider the

ILY/LZ_B(h)
Y b f(g(Y)) f(s0

where we have introduced the fUnction

r(x)

f(x) -_f(a)
'.

x - a

fi (a)

for a

for x = a

'which is obviously continuous. in the _neighborhood of. a We apply in-
,

succession Theorem 3-6c and .3 -6e on continuity of -quAients.and

tions and obtain .

. 11:m _ .1/
m

1
b(b)

1... , -1 1

composi-

f

.Note that -the theorem stsates -that f". and g' are reciprocals at

different points (see Figure 4-3a); f' at x = a in the domain of
g? at y = b In the range "Of -f-. For example, let f 2

Then g : for x > 1'. f t (x) = 2x

f!((x)). and

Thus, for example

131.0.0 =
IsTems7 773

4

g

SO

1

(g(x)r T

and

+ 1 for

= ; gt(3) 13-

1 1
ft 3
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Exercises :4-3a

-
1. Show that f : x 1- where x > -1 , has an inverse. Find an-

1 x
x

equation that defines the inverse -g and find the derivative Of g .

2. Verify that the inverse Of f : x x. lx1 exists and then find the

derivative of the inverse.

Sketch the graph of f - 3x and tell why f does not have an_

inverse. Indicate how you can divide the domain of f into three parts.

and define three new functions each of which agrees with f on its domain

and has an Inverse. Justify your result. (See Ekercises 2-3, No., io.)

14- .' Consider the function defined by

=

2x , for x > 0 and irrational

x2-1- 1 , for' x > 0 and rational

Show that f has a-derivative at X = 1 .

one-to -one,, that f hasaninverse.
Is not differentiable at any point.

Prove that the mapping- f' :Is

Prove that the- inverse of. -f

.
As a first_and important application of Theorem 4-3, we compute- the

derivative of the n-th.root functiOn. The f4nction

g y 947 = Yrin

is defined as the inverse of the n-th power function

f : x

Here n is any natural number. We restrict the domain of f. to-nonnegative

numbers (1.110'? See Exercise 4-3b, No. 4). With b = an ; a >0 , we find

_
1-

1
n

1 1 1-n
gl(b) = = b

T7I5T7-7 n-1 7 -= n`'' .

n a
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4-3

.

That is / the formula Dxr
r-1

= rx previously established for integers -r

...

1 ,

holds alo'ror r .--.
.

n
.

.

We can establish the same'formulefor.any rational number r.Z0p and

q integers, q . Using Theorem 4 -2c, we have

Dx r = D(x1. /Cl ) = p(x1/c1 )13-1D(x1/

Thus we have

- 1
1/0 P-1 1 q

r-1
= p(x x Ex = rx

Corollary. For everyratiOnal number r , Dx
r rxr- .

1 (x >0)

The extension of this corollary to general real (including irration

powers is deferred until Chapter 8.

Exercises I.-3b

1. Evaluate the following and express your answers using positive exponents

only. ."
_

(a) Dx2/3

(b) Dx3/5

(c) Dx 2/3

(d) Dx-3/5

Find f'(2)

(a) f(x) (2x)
1/3

(b) f(x) = x-1/4 .

f(=) x-4/5

135
1
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4-3

3. Evaluate:

ra) D(.1/3 : 3.2/3)

Ai 4- X4/3N(b)
Al - X4/3)

(-(c) D 2173 - ii + -1.- -

. it f(x) = x for n an integer. For what points a in the,domain of
f do the hypotheses of .Theorem 4-3 hold?

5. (`ran Sider the function f : x n
. We have f (x )n = x . Applying

1 - 2:-
Theorem 4-2c, obtain D( ) = xn Why is this not a proof of the
corollary to Theorem 4-3?

6. Let r = under the hypothesis of the corollary to Theorem 4-3 and.aet
q be odd- Prove the corollary for x < 0 . Why is the case x = 0 not
included?

7. U .../- the conditions of the preceding exercise, show that for
g x xPiq , where p > q the derivative' of g at zero exists and
.13'0) = 0



4-4

4-4. Circular Functions.

In Section 2-5 we ambitiously attacked the problem of evaluating D sin x

at x = 0 . We. reduced the problem to that of evaluating

(1) a= linsiah
h-0 h

under the assumption that the limit exists. As we Shall now see, the evalua-

tion of D sin x at any point can be reduced to the evaluation of this limit.

Using the formula for the sine of a sum, we have

sin(x +h) - sin x sin x cos h + cos x sin h- sin x sin h cOs h - 1x sin x
h h h h

From the theorems on limits,

where B =
cos h - 1

D sinx =a cosx+0 sin 3C

We sbR11 assume for the present that a defined

n (1) exists, and from this will prove'that = 0 .

h
Since cos = n- Esi. we obtain

cos h - 1

h

Since urn
n E

= lim. sin k h
k - a , and lim 3;7 we get by using theorems

1170 7 k -0 h-O
.

On limits of products of functions that .0 = 0 . Consequent4k

(2) D sin x . a 'cos- x

where the constant of proportionality a has yet to be determined.'

,

. In reviewing the preceding argument we find several matters
assumed without proof:

(a) The formula for the sine of a sum:

sin(u + v) = sin u cos v + sin-v

(b) sin 0 ..0

(c) 1V- cos u = 2 sin
2 t

(d) the existence of lim
sin h

h-O 7P.

.137. 1 1 3
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_

It may seem odd hatthe well-known properties _(a) -.(c) of the
sine and cosinee listed,as assumptions. The rules of Section
A2-5 derive froff".an intuitively based idea of length for.
circular arcs. _The .concept of length for curves "other than
polygons is defined in a later chapter as a.limit of approxima_
tions by polygonal arcs. Clearly, our knowledge of the circular
functions-does not rest upon any such precise definition but 'Upon
geometrical intuition. Similarly, we derive property (d) not
analytical reasoning.but by arguing plausibly from a picture.
Later we shall see how the argument can be made analytically

for us to delay our account until the gaps can be filled. ..

8 -5), but the circular functionS are too importantcomplete (Section 8

n fact,
-Icortant

we shall profit by gaining an intuitive understanding of the
circular functions before attempting to-be formally precise.

Consider a ray from the origin

-lying in the first quadrant.(Figure.4-4).

If, on the7nnit circle, x' is the

length of the arc between the ray and (0,1
-,e=J

the positive horizontal axis, then the

ray--intersects the circle at the point

with coordinates (cos x , sin x) .

There are two similar triangles in the

figure: th4 smaller has base cos x

. and altitude sin x ; the larger has

base 1 and altitude tan x

cos
sin k tah x(since

x 1 )
Since the

1, tan x)

,sin x)

Figure

(1,0)

4-4

circular sector determined by the arc contains one triangle and is contained
in the other, its area; , lies between their areas:

2
1 x 1- cos x sin x <

2
- <

2
- I - tan x.

"Here we-have used the intuitively evident fact that the area
of a sector is proportional to the length of the corresponding arc.

The factor of proportionality is 1-
'
since the complete unit circle

2
has area it and circumference 2v . Later it will be eiLsY to obtain
the constant of proportiOnality analytically. -

On multiplying by the positive value, . sin x. ,
in_the preceding.

inequality; Nie obtain

(3)

COS X <
sin x cos x whence

I sin x> > cos x .cos x x
.

./.

1381 4



Since sin(-x) = -sin x and cos

for x in the fourth quadrant,

at e = 0 , welo.inre-

4-4

) = cos x , this inequality is also valid

2
<x <0 Since cos e is continuous

lim cos x = cos 0 = ,

x-O

and lim
1 =l . This is precisely the.iind of situation in which we

cos x
x-O

can-applythe,Squeeze.Theorem (Corollary 2 to Theorem 3-4f). It follows'.

-immediately from (3) that

Entering this result

sin xlim =1 .
x,0

1) in Equation (2) we have, finally,

D sin x = cos k .

The. proof of the analogous formula,

D cos x = -sin x ,

is 'left as an exercise.

The derivatives of the other circular functions are now easily obtained.

For instance, from the theorem on the differentiation of a quotient, we have

D tan x= D sin x _ -cos x D sin x- sin x D cos x
cos x

(cos x)
2

cos-2x + sin
2
x 1- = sec2x = 1 + tan2x .

- . 2 2
cos x cos x

We leave the problem of differentiating the. other circular functions as an

exercise, but list some of the results for easy

-(a)- Dsin x = cos x

'(b) D cos x = -sin x

(c). D tan x = 1 + tan
2
x

(d) D cot x = cot
2
x

reference:

Condition (d) abOve implies the continuity of sin B at e and the
continuity of cos'e at 6 =-0 then follows from (c).



... Exercises 4-4 -

1. Show that D cos x = -sin x . e
2. -Evaluate lim t

an h
. (Hint- Express tan h in terms of sin h andh

, h-O
cos h U

3. From the definition of the derivative as a limit and'the result of No. 2

derive the formula

D tan x. sec2x .

tan x tan h[Hint: tan(x + h) =
1- tan x tan h.

.

Compare this result with the result obtained by using the method of

differentiating the quotient sin 25
cos x

4. In the simplest way you can, evaluate the following and express your

answers in seyeral different equivalent forms.

D cot x

D sec x

D csc x

D sin2x

D cos2x

D(4 cos3x 3 cos x)

D(3 sin x 4 sin3x) -

Evaluate the following limits.

sin 2h
(a) lim

h-O

(b)
1 -. cos h

h-O h2

(a) Given that lim sin x = sin 0

sin xProve that =Jim . (Hint: Show that cos x is
x-0 cos x + 1

continuous at x = 0..)

From the preceding result, prove that sin x and cos x are

continuous for all values of x .

Make explicit just what is being.assumed8in the proofs of (a) and (b).

1401- 4 G
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7. Given that rf(x).. G(x) ,"show that Df(ax + b) = aG(ax + b) , provided

.:f is differentiable at ax + b .

8. Evaluate the following.

(a) D(cos2x)(sin 2x)

,
(b) D sin2(ax + b)

(c) D(sin 7x)(cos 2x)

9. Let g(x) = 'cos . Discuss the domain of the derivative for x in the

interval 02< x <:sc .

--107

10. Find a point on the graph of y = sin x at which the slope of the curve

is equal to the slope of the line x + 2y + 2 0'. Is there only one

such point? 'justify your answer.

Il. Evaluate the following.

(a)
1 2x*

1 - sin x)
+ cos

(b) D
1 - tan2 x,)

2 tan x

(c)
(sin4x)

cos x

(d) D
cos x

(-e
1

1 +_ tan

(f) D(x _tan x)

(g) D
(in x + cos X

.

)

.h

2
sin x - cos x

. .

c...

-

t
- Ak"

12.:' Show that there are no points off the graph of y =

which the slope of the...curve '-iiizero.

13. Find all valuesof x for which the slope of the graph of
..---- '.

f(x) = sin x tan x is zero.

sec x an x at

14 7'
. 141
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14. (a) Sketch the graph of f(x) = .x
sin x for 0 <

(b) Examine f'(x) and show that there is no value of -x in the
interval 0 <:k <42 for which f'(x) = 0..

(c) Explain how your results support the fact that f is increasing on
the given interval.

( a) Find the maximum and minimum values of the function

,f(x) = a cos x + b sin x

(b) Sketch the graph of f .

16: Consider f : x sin 2-- in the domain 0 < x < 1 . Is it possible to
define f\at x.= 0 such that-the function is continuous in [0,11

17. Consider. f : x for x /-0 .
x.

Sketch the graph of
,

.(b)- Is it possible to define f at x = 0 such that the function is

continuous-at x = 0

A18. Does the function

f :

2x s
x

0 X = 0 .11

have a derivative at x =

1 . Given that the functions S and C satisfy the equations

d

DC = -S .

-Show that D(S2 + C2)
=

20. Given that the functions f ,g , and h satisfy the equations

= h ,
:47

Dh = f

Show that D(f3 + g3 3fgh) = 0 .

1/4 4 S
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4-5

4-5. Inverse Circular Functions.

Themost striking feature of the graphs of the circular functions is their

periodic or.cyclic aspect, the uniform iteration of the same geometry, -c pattern.

For the sine and 'cosine this periodic property is-expressed analytically by
the relition

sin(x + 2n) = sin x

COS ( X + 21) = cos ,OC

(
where 2n is seen to be a period of these functions. From the representation
of the other circular functions in terms of the sine and cosine it follows

that they, too, have the period 2n . However, the tangent and cotangent have
the shorter period it as well.

From the periodic character, of any 'circular function f , it followsat
once that f cannot represent a one-to-one mapping on its entire domain: if
b = f(a) , then b = f(a +.2kn) -for all integers k . Every_ point of the
range; of f is covered. infinitely many times in the mapping: We cannot,

obtain an inverse for f over its entire domain, so we restrict ourselves to

a special representative interval where either f is increasing throughot;
the interval or f is decreasing throughout the interval. The names of the
inverses of the sine, cosine, etc., on-such piestricted domains, aTe'arcsine,

arcOsine etc.
*

For the sine, function we choose the representative interval f-

where the sine.is,increasing Nee Figure 1---5a). The range of th4, sine-on

this interval is the interval [--1,1] . The ar ine, therefore has the

domain [-1,11 and the range [- 717] . Consequently, we define the value

y = arcsin x in the mapping

arcsin : _may for -1 < x < 1

as the one value satisfying - -f-s< y < f for which sin y = x .

Tr n,We could have used any other representative interval, [kn -g- ,kn -1-.7i.

for k.= 0 t 1 , ± 2 , ... , t .define an inverse of the sine. For this

r n7 n,reason the specific inverse, the arcsine with range [- ,7p , is known as

A common- alternative - notation is -sin-1 for arcsin tan-1 for
aXctan,_and so on. We do not use it in this text because it conflicts with

Nthe universally accepted,convention of writing sinnx or (sin xj n , etc.
r.;42-
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3

the.principaYinverse of the sine. Similarly the specific inverse circular

fiznctj.ons 'defined below are known as principal inverses of their "respective

circular. functions.'.

For the =cosinee choose the representative interval [0,7t] where the

cosine is decreasing (see Figure 14.-5b). We define the value y = arc cos x

for . < x <1 as the one 'value satisfying 0-< y < sr for which cos y =

,
Eina3-1y, for the tangent we use the representative interval (- n n,7)

and define y =..arctan x for any .x as the value in the interval
zr'

Tc- < y < 7 for which tan y = x (see Figure 47.5c).

We n eed not ccincern ourselves (in the. text) with inverse-functions for

.t-he cotangent, secant, and cosecant; these can be treated in tennis. of. the

functions. already it our disposal (see_ Exercises 4-5) and are used infre-
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4-5

We now turn to the task of finding the derivatives of the inverse

circular functions. This is merely a matter of applying the general theorem

on derivatives of inverses. 7he function

g 4 y

is the inverse of

f x ,

with derivative f1(x) = cos x . Hence

Therefore

1
St(b) -='F+7-a cos a

if

for -1 < y < 1

for --
'2

< x < 7 .7-

b = sin a
/ 2

-
2

a < - , then

1
D aresin x

- sin
2
a -17. - b

2

.1774 7 727
1 - x

for -1 < x <1 .

As an exerciseyou are asked to derive .in .the same way the formulas .-

r

11 -

for .1 < x<:;7_D arccbs-x. -
-1

- x
.

arctan: x x
1

(Tte:first of these folloWs immediately; from the identity arccos x =
2

- arc-

sin x-..T It is noteworthy-that the derivatives of all the inverse circular

functions are algebraic functions:

Eercises 4-5

Determine -the (1.omain and range and draw the graph of the function.

(a) f : x arcsiz;i. (sin x)

x)(b) f : xj

(c) f (cos x)

(d) x --.. cos (aresin x)

(e) f x a:r.c-Ean, (tan x)



4-5

2.- Derive the formula-

arccos x _

-
x2

without using. the identity which relates arccos x to arcsih x .

-1

3'. Derive the formula

D arctan x -
1

1+ x2

4. Derive each of the following formulas.

(a) D arccot x = 1

1 + x2.

(b) D arcsed x 1

'xi 127-77-
(c) D arccsc x _i

A
1 14F177-1.

5: EFauate':

(a) ri (arcsIn x + arccos x)

(b) D (x2arcsin x
-2

(c}
arctan x

(d) D (arcsin x)

1
(e) D

1 + arcsin x

6. Find lim arcsin h

h-O

2

(Hint:. What is the definition of the derivative

of f(x) = arcsin x at x = 0 ?)

/7
Evaluate:

(a) D( arcsin x
+ arccos x

: (b)
(1

!rcarcccs'cc x

(
1 - arctan x
1 + arctan x

(5)

likEl 5 roc



A' 41°6\
4-6. Compositions.' Chain Rule.

4-6

We'have seen that wemay construct new functions by composition of

already known functions. As we shall now show, the derivative of,a composi-.

tion can be expressed in terms of its constituent functions.

Consider the function" x obtained by composition of the

functions g and f . If g is a polynomial, then we have the formula

(1) Dxgf(x) = g (f(x)) jpxf(x) = g' (f(x)) fl(x)

(Corollary 3 to Theorem 1+ -2c) ;_ but we have not derived a corresponding

formula if g is not a polynomial. r

The formula (1) is an instance of a general principle called the Chain

Rule because = it can be used to differentiate a chain of compositionS / for

example

(2) Dhgf(x) = ht(gf(x)') Dxgf(x) = 1:0( (x)) (f(x):)fqx).

. -

THEOREM 4-6. -Let-the function f be differentiable at and let the

function g be differentiable at b = f(a) . Then ty ie composition

0..: x ---..gf(x)' has a derivative at a given by

'02(a) =',gl(f(a))fl(a) .

Befoie proceeding with the actual-proof let us see first how the result

stated:by the theorem might have been conjectured. We may view the definition

-for the derivative at -a .of a function: hex) h(a).liM , as-x -a

follows. -Call x a =-44 the."increment of x at a" and
-A

h(x) - h(a) 4h(a) the "induced increment of h(x) at a Then ht(a)

may be interpreted as the limit of ratios of incriblits 2112L11- as _44:
44

approaches zero. Using this interpretation we would anticipate that

OT (a) lim *11-- lim
i_f_CEJt

Da

.This together with the theorem on limits of products and compositions suggests- -

that the anticipated formula for Ot(a) is the correet, one. Our deduction

.
would lead to a proof of .the theorem if 4f(a) were never zero. This cannot

be guaranteed in all cases; for example, if f is a constant function, then

be(a) is always zero. Thus we must prodeed with greater.carel-taking note cif

situations in which 4f(a)- may be zdro at some points.

149 -
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)0 -

Proof. If f(x) / f(a) = b , then

0(x) - Oa) gf(x) - gf(a) gf(x) - g(1:, f(x') - f(a)
x - a x - a f(x) -b , x- a

If f(x),=.b , it is true that for any number O

0(x) - 0(a)
c

f(x) - f(a)
___,/..- x - a x - a

since both sides are zero. In terms of the function r defined by

1

g(y) - g(b)
for y / b ,y - b '

r(y) =

we then have

(3)

1 for y = b ,

0(x) - 0(a) r(f(x)) f(x) :(a)
x-

We could apply the theorem on limits if r were continuous at b . It is,
however, not continuous unless we choose *c judiciously. Pick c = g'(b) .

Then lim r(y) = lim g(Y)
- b

g(b) = g'(b) = r(b) , that is, r: is continuous
Yob .-y

'y -b .

`at b From (3) and Theorem 3-6e on the continuity of compositions, we
obtain now

01(a) 0(x) 9S(ar) = lim r(f(x)) lim f(x)
-

fa(a)x - Xx-a x-a x-a

r(f (a))f2(e.f= gt-(f(a)) ft (a),

Example 4-6a. Eyaluate 'D sin x2 . With f(x) = x,
2

and - g(y) = stn y
we have fl(k) = 2x , gt(y) = cos y and therefore,

D sin x2 = 2x cos x
2

.

Example 4-6b. Differentiate 0(x) .= arctan 1- . We set ftx) and
g(y) = arctan y , so that

(x
-1 1
77 2 g' (Y) =
x 1 y2

02(x) = D arctan
x

1
-

1.2 ( 2
. 2

-1

1 +.(-9 x -x. -Jr 1 .x
---,

150
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Example 4-6c. Evaluate D co s(11 + x)
\ 2/3 .-

f(x)
1 - x
1 +

use (2) , with

, g(y) = y2/3 h(z) = cos z

-1/3

?(x) gi(Y) =
2

y hl(Z) = -sin z .

The torthula yields

(1 x)2/3 1 - x 2 3. 2 (1 -Tzx)-1/3D cos 1777 = -sin(-770 -2
x)2

§(1 --x)-1/30 x) -5/3 (1 - 1/3
\.1 + x

4 -6

Exercises 4-6

1. For each of t ollowing find. Dfg(x) if (x) , Dff(x) , and Egg(x) .

(a.) f(x) . x3 - (x) -= ,/7c

(b) f(x) . sin x , g(x) =

(c) f(x) = x2 , g(x) = sin x

(d) f(x)-=

(e) f(x),_

2
=

1 + x "="

(̀)
/ 1 + x

sin(x2 ) , g(x). ..1 Il - x2

2. Find Dff(x) for:

(a) f(x) =-sin2x

(b) 'f(x) =,tan2X

3. Find f'(x) if f(x) is:

(a) -(x3 + 4)1/2

(b) (2x2, + 2)-1/2

+ 1

(d) + x2

151
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4. Evaluate:

Dx -772

(b) (x2 1)1/2 (x2
1)-1/2)

217..

x2+ a2

(d) 1 +
X k _

(e) (x(2x2,,,, )-1/9

(a)

(c)

Evaluatei

(a) Dx(

(b) Dx(x2 s c) .
( )--D (cos (cos( cos x))x

(a)
4rcsin(cos x)),x.

6. Evaluate:

(a) Dx arcsin(sin x - cos x) (f) Dx(arcsec 111 4-t12) .

(e) Dx(arcta.n arctan:4)

(f) Dx(x2sin x cos x) .

( sin2x

x sin(X2

(h) DS (tan(11 - )

-(b) D trclin. 1 2) D (a.rctan x 1 + arctan x)x

(a)

D arc an(x + 3/7.
(h)(

1 x)_ DX arctan I
+

x

(e) D ((aresin(x2)} -2

Evaluate:

(a) D sin x where v = cos x .

(b) D- -/77x2 , where u

.Dx(arcsin x)
arctan x

D (arcsin( arcsin xx

(c) Dv(2 + 3 cos2x) where- v = sin x .

15
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8. Compute the limits'of each of the following ratios.

) liM x 1 )277-37.
x - a

x-a

(b) lim (arccos x

x -a

2 - (arccos a)
2

-x - a

If f(x) = (Ax + B)sin x + (Cx + D)cos x , determine the value of constants'

A ,B,C,D such that for all x , f'(x) = x sin x .

10. If g(x) = (Ax2 + Bx + C)sin x + (DX
2
t EX + F)cos x , determine the value

of constants A,B,C,D E,F such that for all x

gt(x) = x2cos x .

11. Determine the derivative g'(x) in terms of f'(x) if::

(a) g(x) = f(x3) f(x-1/3)

(b) g(x) = f(sin2x) + f(cos2x)

(c) g(x) = f(arcSin x) + f(arctan x) .

12. Prove that thederivative of an even function is odd and vice versa (it

is astume.d that the derivative exists).

13. Show that it is impossible to find polynomials p and q such that:

Dp =(a)

(0)

A (0)

I 1D=
p x

DP =
1

q x

NO.



4-7. Notation.

There are several commonly used-notations for the derivative. Each of

these. is valuable in an appropriate context-. The notation of Leibniz, in
particular., will be convenient in the application of theorems on the differen-
tiation of inverses and composite functions.

We have already tsed four.notations for the derivative of a function at

x Consider first the three representations of t ,ie derivative,

(1) +f'(x) = lim f(z%
f (x)

f(x h) - f(x)
- x

h-O

The notations (1) do have the virtue of complete precision: independently of

context we see immediately that a specific function f is being differentiated

at a specific point x . This precision was desirable for'logical clarity in

our development of the foundations of our subject.

In more complex situations a completely explicit notation may be a

barrier to understanding rather than a help, simply because the complexity of

the notation conceals our pattern of thought.

Before we examine other notations, let us review the differences in

usage of the notations we already have. The two limit notations place

emphasis.on the numerical value of the derivatAe at the point x , and they

are used interchangeably. The other notation places emphasis on the function

f' x lim
f(x + h) - f(x)

h-O

The prime is usually reserved for use with thea.bstract designation f , g

of a function as in f' , g' , . The-symbol D
x

is generally

used when the function is given by an explicit name or formula, for example,

D
x

cot x , D
x
(x

2
+ ax + a

2
)

(Here it is understood, unless the contrary is explicitly stated, that all

symbols other than x appearing in the expression for the function are con-

stants; thus,

Dx(x2 + ax + a2) = 2x + a

If there is no possibility of confusion the subscript x is often omitted-as

in D cot x .) This notation omits refere4e to,,-the specific point where the

derivative is being taken. 'The symbol D;--("'" is an operator which when applied
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4-7

to an expression -giving the value f(x) (for all x in a suitable domain)

Yields an expression giving the value ft( x) of the derivative ft Thus

for

we have

f : xe-x

D
x
f( ) = D

x
x
2

= 2x .

ri

Ts "must be understood as-the statement tha0for all x the derivative

: x x
2

is ft : 2x . The insertion of a specific value of

-in this statement makes nonsense of the initial clause, "for all x ." if we

wish to make the reference to the "point at which the derivative is being

evaluated we must make explidit mention of it in context or inven a special

notation, for example,

The further,notations abbreviate the explicit notations by omitting the

erences to trig function f alid'to the point at which the derivative

notations parallels a common abbreviated modeevaluated. ,The first of ,these

of expression. We say, "y is a function of x" meaning that there- exists a

function

f y

which maps each number x in a certain domain onto a value y in a certain

range. This expression is appropriate when we wish to call attention to the

existence of such a relation'but are not impelled to name the function or.

define it explicitly. It is.suggestive,5,n relation to the repreSntatIon of

the function by its graph, the set of points

a parallel notation for the derivative,

ft :

(x)y) where y- = fEx) . We use

and say'that. yT is the derivative of y , meaning that there exists a

We cannot simply insert a value of x where x appears after the

,

.214:"function symbol. For example, given
-
f : x ---.5-x

2
we have D

x
fti.-3)-= D

x'
0 = 0

z-

the expression for the derivative of the constant function x--a- 9 . At the
.

same time
Dxf(x)Ix

=. 3
= V(3)
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function f such &hat y = f(x) and y' = f' (x) . Sometimes a dot- is used

to indicate a derivative; e.g., Sr' instead of y' . Clearly, to use such

abbreviated notations and ways of expression we must have a context in which

they are intelligible and repreenta genuine convenience.' We shall find them

so in the next section on *klicitly defined functions and their derivatives,

and later in the applications.

A slightly, but significantly, more explicit notation.was introduced by

Leibniz. We set y0 = f(x0) and y = f(x) and write the derivative in the .

form

f(x) f(x0) Y Y0
fr lin - lim

x-Tx
x - x x - xo

0
0 x0.,x

o
/

Leibnli.introduced-the "difference" notation

4nac = x x0

6Y = Y -YO0

..Here--.bx .1s a single symbol with the same meaning as the symbol /1 used in

(1), and Ay is a single symbol which represents the difference in the

function values corresponding to the difference .6x. between x and
0

In this notation, we have

fqx0) = lim
4x-C

Further, in writing the derivative, Leibniz , pa-'-. _ilel notation

dx

/Again, refererices-tothe function f and the point x
0 -where the' derivative

4.,is being taken are lacking and must be supplied from context. However,

-Laibnizian noiation is slightly more explicit than Newtonian: there is not

,only reference, y to the range of -f but also a :reference, x , to the

domain,

The symbol does not represent a ratio, but the limit of a ratio.,

The parallelism with the notation for fractions may seem awkward at first,-

The dotted notation was introduced by Newton. It hag been called "fly
speck" notation by generations of irreverent teachers,and students.

356
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but it is actually singularly apt.. Although the symbol gi represents a

derivative and not a fraction, the rule foi. 'differentiating a composition

(Theorem 4-6) permlts us to handle quotients and products of these symbols,

formally as though they were fractions..'VOr suitable functions

TheOrem 4-6 states that .

f :

g :

y

Dx gf(x) = gt (f(x)) ft(x)

In Leibnizian notation this becomes

dz dz
dx
-

dy dx

We- see, -then, that the theorem has the formal appeardnce of a cancellation Of

fractions. More generally, consider a chain of compositions as indicated in

Figure 4-7, where fl(x) = yl , f2(y1) = Y2 ,
' fb(Yn=1)-- Yn

and

y
1
= 0

1
(x) : = f

1
(x ) , Y2 952(x) f2c(x)

y3 =0
3
(x) =,f

3
f
2
f
1
(x) .

f.,

X
_L

v_,
2 y2 y3. In

n+1
z

Figure 1+-7
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4-7

We can generalize Theorem 4-6 to this situation by applying the rule repeatedly
.

to the compositions

Thus

0k4.1(x) fk.ik(x)

0;4.1(x) f:4.1 (o (x)) 0Ic(x)

952(x) f2k1(x),) fl(x) 1

03(x) = f
3 (?2(x)

.

02(x)

f (f2f1(4) (f i(x)) fl(x)T.

(k =

I

This generalization of Theorem 4-6 is'the.Cbain-aule-of differentiation. Th
proliferation of compositions is already confusing and Clearly, as we go on,

. ,'it will become intolerable. The mere-writing of OT(x) for large n bedomes
, -a problem. By sacxifiCimg explicitness, Leibnizian notation resolves the

problem:
dz "dz dyn dyn_i

-(1 y2
0

10'(x) = . r i ... .
dYn cYn-1 dYn-2 dy1 dx

Ir this notation we reveal the chain.of mapp ings;

x z
e7-

and at9,:i'he.bsame time exhibit the structure representing the'derivative of the
composition 0 as a product of derivatives. At the same time we omit

. .

reference ,to.the 'functions which define the mappings and to the points at
which the Several derivatives Are to be taken. This information has to be
supplied froM context.

As a fur:ther.evidence of the aptness of Leibnizian notation we observe
that for inverse functions_ g , where

f : x y

g
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theTrelatiOn

.

.

appeart in'Leibnizi4an notation as

dx = alciz
dy dx

JP

...

_/' .- . .

It is sometimes convenient to supply the omissions of Leibnizian notation

d-=as follows: We consider dx as an operator identical with Dx . We then
,

write

d r
- dx dx

to supply the reference to -f

la dx

and write

Or
d

f(x)dxx = x
o

= fqx )0x = x
0

0

to supply the reference to the -point at which the derivative is taken, e.g.,

= 6 .
x = 3

2 2 I
"r The successive higher derivatives are written D f = f , D3f ='f,"2,_
lf
D f = f

ty
, Dr5f-= fv . The Roman superscript notation becomes cumbersome for

high orders and_t becOmes more7Convenient to use Hindu-Arabic numerals'

parentheticRily as 14:
3
ff,-=.f

(13)
. Thus the n-thrderivative of f is:W

written -Dnf =f(n) . It is also a useful convention to define the zero-
Co) -% :-,

'order derivative of f' as f itself, f' . = f ,.r'"

In Leibnizian notation we write

n n

r Y Y -n
)

? dx
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..7:

Exercises 4-7

dt
-1. Let y = sin x and x = t2

-I- -1
c

.,- Find dy and
't = 3.,,' = 1

d j2. -Let y .= f ( ) and x- = h(t).. -EXpress dil in terms,of to .
t = t..-

- o

3

Let y = f(x) , x = h(t) , xo = h(to)
,Using Theorem 4-6 shoir that ...

Tind the following:

(a) D sin. xl x = D sin xlv x--

dv
dt 1 =

dx
0 at I =

= I

it/4

(b) Dx (x2 + sin a sin 41 = 5n/3

(c) dTx- (x2
-. a2) lx a

Tr

(d) Dx(f(a)siF x + f(x)sin

5. Let

(a)

a + f(x)sin

0

= a

y = f(t) , w = g(t) , t = h(x) , z = .

Using Leibnizien notation, dx-cLz in4terms 0

in`terms.(b) - Using (a) xpress
= X

0

dy dw dt
d t ' d t all"" dx

and fiT .
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tJ
4-8. Implicitly Defined Functions.

A function whichis described in terms.of'rational operations on,and

compositions and-inverses of, known functions is said to be defined explicitly.

No matter haZo complicated.the descriPtion, if it is:explicitly defined in

1

terms of differentiable functions we know how to differentiate the function.

You should, if pressed, be able to differentiate the explicit concoction:

Y" =

[-.

x

x
arctan -1 +

sin2
1 + 2

It often happens that a function- is defined indirectly or implicitly.

Thus the conditions

2
. (2) ( tangy + 2 tan2y)3 -

sin
2
x

- 1 , 0 <
x

determine y as a function of x .

Sometimes we -can find explicit expressions representing functions defined
implicitly. This is the case for (2), which has the explicit solution (1)-

We put the implicit- relationship (2) in the, form

2'
tangy + 2 tangy -

sin
2

+ .= 0
x

and recognize that this is

obtain

x

a quadratic equation for- _tangy .

2 .

:11/
.sin2x + 1

x
tan y = -1 + 1 +

2

where the positive square got has been taken since tan2y !is positive.

Taking the square root 'arid then the arctangent of both sides gives-(1) since

0 < y < 2 :.

In; other cases there is either no equivalent. explicit definiti2 of a

function defined implicitly or it is very difficult to obtain'ot:s. An example

Is provided by the relation

(3) x2arctan z+ z= sin x .

-1.

This equation determines a,unique value -z for every number x ; that is, it
, .. .

defines a function x ----... z but we' are -unable to obtain an explicit expres-.
e c

sion for :z .
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it-is. easy.to see that (3) defines as a function of x Fora.ny-

given number x 2
arctan'z + z is a continuous functiOn and. has

---

.ar-bitrarily large, values, both positive and negative. Hence, by the Inter-
.

-mediate Value Theorem, there is some value z ±'or -which (3) is satisfied;

since 0 is. anincreasing.function, that value must be-unique,.and'the func-.

tion is defined implicitly by relation (5).

For the functiOn-defined'by (1) we .know that -We can differentiate y but

the execution pf:the differentiation would a punishment. much more'con-

venient'way to find -the derIvative'.i.s_to start from:.(2), .4pplyingthe chain

7rule andcher techniques of differentiatiOn:we obtain
Nw

3ttaf14y 2(+ tan3y + 4:tan*y)sejy

x2 - 2 s x cos x - 2x sin2x-
- 0 ,

x

dywhich is'easily solved for Tia-

-It is true that the fortmila obtained in this way Will itself be somewhat
ayimplicit, since it will express -5- ,in terms of both x unlike' the.

one we could 'have obtained by differeniiating directly, where

would have appeared on the right side. We, can still get a formula involving
-

x '-aaone i= we want it, by using (1) to eliminate y , but it is clearly.more

convenient'to y, instead of the complicated expression it represents.

-For tOst purposes,we do not need the. completely explicit formula for the

derivative. Igrwewigh to' find the value dy for a- specified value:of xdx
for ins -ice, we can' first: the corresponding value y (explicitly

f6-
from (X in tniS case, but-by numerical approximation in most practical prob-

ay.:ems), and then compute -- from the shorter formula.
dx-

From (3) .we obtain no explicit formula for z in the first' place, Bat:

we can"Still obtain a formula for --dz
dx

by implicit differentiation. Thus, if
. _

z is a differentiable function of x , we may apply the rules of differen-

tiation'and obtain

dz dz2x arctan z + x2 1
2

+
dx

= cos x
dx

1-+ z
or

(4)
dz cos x - 2x arctan z

.
dx x

2
+ 1

1 + z



4-a
Nip

If we,wish to evaluate this for a specific x , we will first have to find.
.

from.b),:'probably by some approximate. numerical technique.

We emphasizethat,wehavehot shown that (1+)- holds, merely that if LI
- ,dx

muexists it7st-have the value given by (4). There is in fact a theorevi7--Whf_%I.

applie*,under, general -Conditions (which covers the present case and
most of'those hat arise in practice) that if an. equation defining-a function
implicitly can,. be formally differentiated and the result solved for the deriv--

tive of-the'7fUncion,-then the derivative of the function exists andhas,the

value'found-.'To.prpve, or: everi precisely state, 'this theorem would take us
*too far afield.(Apperidix.5).; hereafter we shall use implicit differentiation

freely to solve problems-, without each time reiterating the warning-that-the
derivative-has not been proved to exist.

r+,

That we Cannot solve for the derivative at every point even though the

function is well. defined is ,illustra;ted by the example
4 .

u5 x2u = x(5 )

. which defines

. .

duwhich can be solvqd for everywhere except where 5u x2 vanishes.
-Since from (5) we have u = 0 when X = 0 , we cannot solvellmor duax

x.= 0 . ,In fact, u is not differentiable ,at x = 0 .

Even If a function is differentiable at a.given point the method may'fall.

For instance, consider the implicit definition.

unambiguously for. each .implicit differentiation yields

4 du
(5u + x2) + 2xu-= 1 ,--

at

(6) v5 + v = x3 .

As before, at x = 0 we have v = 0 and,po.solution for
dx1r- from the

.

implicitly differentiated result

(5v + 311.2
)

dv 3x2
dx--

In this case, however, there is a derivative at x = 0 , and we can find it by
- writing (.6) in the equivalent form

and then differentiating:

This gives- =

((v2

2 1/3v(v + = x

1/3
1-

2 v "
k 0 .

2/3] v

163 1 6
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EerCises 4-8

1. For positive x , if y =xr., where r is a_rational-nuMber, say

r = 12 (p integers),then yq .xP Assuming'the existence of theq

derivative Dxy ,lder4ve the formula ,Dxy = rxr using implicit differ-

formula Dxx .= nx
n-1

, for integral n

2. For each of the owing, find Dxy without solving for y as a f.unction

entiation and. the differentiation

2
(.'a) 5x- + y = 12

1(b)"..2x2 LY2 t x. 4

(c)- "Y -3-x2 =
.. .

(a) 3r3- -

3. For each of the following use implicit differentiation to find Dxy

(a) =_ -I- X

(b) xaY -xY2 =

(c) x9\--. 10 integers)

.(d) -)1XY + x = y-?"

\\
4. Use implicit differentiation to find. 'D x .

(a) xiS7- + yli

(b) .2x
2 + 3xy + y2L + x_- 2y + 1 = 0

(c)
y)1/2 y)1/2

=

(d) 3x2 + x2y2g= y + 5

(e) 14-x2 + 3xy - 7y = 0

5.. For each equation find the slope of the curve represented; at the stated

point.

(a). 2x2 + y2 + x - 2y + 1 = 0 at the point (- ,1)

(b) x3 y2x2 3y,- 1.= 0 at the point (1,-1)

(c)
x2 xv;r__ 6y2 =:2 at the point (4,1) .

r-(d) x cos y 3x
2 -5 at the point ( Y2, )



For each equation, find the slope"Cf _the curve

or points: inhere x y . Give .a geometric explanation for these results.
.

(a) x3 - 3axy y3 = 0

(b) + yal:=, 2

-(c) x-2 + y2 = 2axy

represented'at the point

7. Find DxY_ by implicit differentiation.

a. sin y + 'b cos x = 0

c6s. y y sin x = 0
sin" "zr = sin x' + sin y

-csc(X + y} =.y

x_ tan y. - y tan 'x

y sin x = x- tan y

xy + sin -3? = 5-

7

1/2 1/2 1/2 _.-If . 0' -<.-x < p. , then thk equation' x + .y , = a ,fines y as a
function of x -. Assuming the existence -of the deriVative, ..show without....

solVing for y that f ' (x) is always .negative.

Assuming that Dxy = D x = 0 (i.e., x and y are independent find the
following.

(a)
Dx(x2 + cos y)

(b) Dx(Y2) Dy(x2)

(c) D(x2) D/(Y2)

(d) Df(xy) + D f(x)

(e) D(xy)2
ro-

10. Let c1 and c2" be 'two curves which intersect at the point x0,y0) and
let the sieves of c3---:"arld.c2" at (x0,y0) be m1 and m2 , respectively.
at the product mim2 equals -1 , we may say that the curves c3:" and c

2
are -orthogonal.

(a) Show that the lines with equations

3y +: 4x + 15 = 0 are orthogonal.
= 0

(b) Shothat the "circle x2 + y2 =r2 ,r constant, is Orthogonal to
the lizae y = mx , m constant.



14.-g

11. Find-t points of intersection of the ellipse x2 10y
2 = 10 and the

hyperb la x2 - 8y2 = 8 , and the slopes of the curves at these points of

intersection. Show that the curves are orthogonal.

12. Show that the family,of elf-orthogond1, i.e.,
.

.. -

2
each two, members of the family ;-":,=- = 14-al(x + al) an y2 4a

2(x + a2-)

that intersect, necessarily intersect at right ang
.

A 3. For What values ofjk will .there be exactly one'line passing thrOugh-the

point (0,k) and orthogonai.to the parabola y = x2 ? For what values of

k will there be exactly three orthogonal lines?

,.
3.4. A ball -dropped out ofa window falls 16th feet- in t seconds. An

4
observer iscom!tchine from another window at the same height 48. feet-

away. At what rate is'the,distAnce of -the ball from the observer increai-

ing tiro seconds after:the ball is

dropped?

( a) Write an equation which

implicitly defines the dis-

tance y = 0(t) between the

observer and the ball at

time:t .

(b) Use implicit differentiation

to answer the question of the

problem.

15. (a) Given that simple harmonic motion is described by the function

p sin(w t + c) where w and c areconstants. Find the

velocity'at time t = to

(b) Simple harmonic motion may also be described by the function

p : -1-.c) where w ..and c are constants. Find the

velocity at time t = t
o

.

(c) In what sense are the motions in (a) an (b) the same?.
;*

16. .If a simple harmonic motion is described by the function

p. : t wt B cos w t where A , B , and w are constantspi.

determine the maxim velocity.

3



1. EValuate:

(a) D(x + 1)1/2.

(b) D ((arcsin J_)2)

D1/3x2.-:

Miscellaneous Exercises

(d) Du "177.7 , 'where = x

( .k) Ev(sin x cot x) , where v = cos x

(1)- D(in(x1/2) - cos(x
)

( 1 D- (1 - sin x where v = cos 1
1 vI 4- cosx '

. ._

1
.

vt
)

((2x - 3)

(f) rt() -

(g) 3

x3 - 1

(p) D(2x8 - x +

ere v arcsin x

(h) D (x2 x-1f2 X-2) , (r) D

where u =

(i) (X 4- 8 - 771.--7-
a constant

(j) Dix -4- 1.

(
(s) D a/.csi;(x ) + arccOs(2' 2- x )

. .

(t) D(an(x-1 - x),)

2. In Section 2-4- -re defined the velocity of an object whose

straight lirie at time t = to given by s = 0(t) as. the limit of

ratio

location on

_ 0(t) _ )
0

t t
0

a

and in Section 2,5- b erved that this limit is the ,value. of the .deriva,

_,-
_tive 0-l- -:.&.- t

o
r mentally\t has been establisjaed thatthe

distance -covered in time y. a -freely. falling .body is 1:)oplort-i.onaltotime
2 .1.

t and therefore it can be-,_represented-by 'the fililcti_ On:: .rii:'' t ..- ct, ,

.

. wher61 c is a' positiVe constant. Show that the veloCity' of f ely .

falling body is directly proportiOnal to the time , .
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3. _Suppose a projectile is ejected at a point P which is 20 .feet above the"
ground with initial velocity of. vo feet per_second. Neglect friction and
assume that the projectile moves up and down in a straight line. Let
e(t) denote the height (above P in feet that the projectile attains
t seconds after ejection. Note that if gravitational attraction were'not.
-acting on the-projectile, it would continue t:mOve upward with a. constant
,velocity, traveling a distance of iro_ 1E'eet pel"second,: so that t-it height
at time t wOuld.be .: We RnoW that-the:force of

vity acting on the projectile -causes doWill until its velocity'
ro and then travel back to theutterth. zpn:the.bas-ofv.physicia"-

exp riments the'formula e(t) = v0t -
2 '

-where represents the force-
1..§..ea, to represent-the:height (above P) :of the projectile

as long as it it.alOtt., Note that e(t)e.-'0 when. t = 0 and:wgin

a

2v0
. This means. that the- projectile returns.to-the

evel after' - seconds.
g

(a) Find. the velocity of .the projectile at.

(b)

(c)-

and g) .

Sketch the

Compute (in

to zero.

initial 20 font

t
0 (in terms of

s vs. t and the v vs. t curves on the same set of. axes.

terms of --the-time required for".the velocity to.drop.

(d) That is the velocity on return to

(e)

the

Assume that the projectile returns to
below the initial t9e-ofe point P .

Impact?

initial 20 foot level?

earth at a point 30 feet
What is 'the velocity at

-7
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Chapter 5

APPLICATIONS OF THE DERIVATIVE-

5-1. Introduction.

5-1

In the preceding chapter we were concerned primarily .with the .concept of ,

The derivative f" (a.) of a. function' f at a point .a-derivative at a point.

is an example of a-. local property- of f I it is_ defined as

li(a h) -- f(a)
h .7

-:h-0

so that the derivative- at a. Is defined by the' values of f' in any neighbor- '-

h-ood of a no matter how small By contrast, in _the applications we are

often concerned with global properties of ; for example, whether_ f is

increasing throughout its domain,. or whether M- is the largest value f(x) .

for all x in its domain A global property of f involves the values of

f in its entire domain, a local property involves only values in the neigh-

borhood of some given point. For example, the property that f(x) is

_bounded below on [ab] ,by a given constant is global. The property

f' (x) > 0 ata given point is local.

One-of the problems of this chapter is to relate global properties of f

to local conditions satisfied by f at. each point of its domain For example,

if f is continuous on a.,b] and differentiable on (a,b) the global-
,

property f(x) > f(a) for all x in ---[a.,b] is established, if f'(x) > 0

for all in (a,b) .

In general, we explore the properties of functions differentiable on an

:interval. We focus our attention upon the function

rather than upon' the values
,4
of the derivative at individualpoints. We also

consider the, functions obtained.by, iterating the operation of differentiation;_

-in particular, we shall investig-aie-properties--related the second

tive

D( Dr ) = 3?2r =

and shall also htive occasio use in this chapter for derivatives of higher, .

order.
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5-1

Our major aim in this chapter is to see hola the derivative f' gic;es us
information about the function f' and its graph. We already hate obtained
one such item of information in Theorem 3 6d: because: f 'Dcustgbe defined and
continuous where it7is differentiable, each:point x on the domain of r' ,is
Also a point of continuity of- f . From this fact, upon any closed interval
in the domAin'off' ,.we obtain ,the-glObal.properties of f given by ;the-
extreme'and-intermediate Vallivtheorems-of% Section 3 -7. Further, we shall next
see how.knowledge-of thesierivative of .f onLan interval enables us to locate
the extreme values,in't.hatdilterval. In Section 5. -5 we shall see tow infor-
mition about the.seconoyerivative' f ". , the derivative of f' , gives infor-

---..-mation about and also about the function f itself.

c-?.

.1.t'4,
I
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5-1

Exercises 7-1

. (a) Obtain an expression for the first and higher derivatives of xn

where n is a natural number.

(b) Do the same for xP/9 wher4 2 is rational -p, and q relatively
q

/prime. 'What is the domain of f' when f(x) = x1 2 ?Trwhat
values P is the domain of' f' different from that of 1/C

q

x xpq ?

of xP/g .

2. -What is the twenty-third derivative of

.(a) *sip x ? (c) sin 2x ?

(b) cos x ? (d)
5x17 - 10 -11.7

Find the n-th derivatives of the following functions:

Answer the same question for- higher derivatives

(a) f : + b)-1

(b) f : x -=-4- sin x .

(c) f :'x cos(ax b) .

(d) f : x sin
2

x .

(e) f : x cos3 2x .

-. n

(g). x
x- a

A (h) f : x 1:

x2 +

4.- Let f _be a function defined fox-

property
_ .

f(a = f(a) f(i):, fOr:all.real.nuMbers a and- b .

r

values. of x w14.0h the

-- 70425'2

A.

F

.( Shpw that either f(0)=1 'or f(x) 0 for all

:.(b). If f(o) = 1 , show that. f(x) /-.0 for all

-CO If, additionally; a'(6)-= 1. -and- t has a derivative:4i x = .

show_that,/W.2 exists for all x'-ana'that"-fl.(k),=-f'(:) %.f(x)_.
- .

a

4
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5-1

A-5. F(x y) = F(x) F(y).. where F is continuous at one point and
defined for all x , show that F(x) is .everywhere differentiable.

\.6. Given that the function _F is defined for all. x V(x) exists
for 0 < x < a , and that F(x + a) = kP(X) for all x .(a, k constant).
Show that .F is everywhere differentiable and sketCh some -possible-
graphs- of F a ssruni ng

(a) F.(0) = 0 , Ft(0) 0 .

(b) F(.0)-.= 0 , F'(0) = 1 .

(c) If F(0) = 0. and the graph of F is tangent to the ;.y -axis show w

that F is differentiable for all x 0 and sketch sortie passible
gra.-olis of F.

rL!Li`



5-2. The Derivative at an Extremum.
41.

In the problem of Section -1, we attempted to determine the dimensions

of a box of greia.test Volume. V that satisfies certain postal regulations: we

sought to maximize the function x---.72x
4..27

4x3 . Another problem-of similar-

mathematical,structure might be.to determine the, length L of ye shortest

path along which two'points -can be connected so as to meet a given curve some-,_

where on the. path (the reflection prbblem of a later chapter on geometrical

optics). Here we seek the minimum of the function L . A value which is either

a maximum or. a minimum for a fution f is called an extremam of f .

(1) Location of an extremumkon a closed interval;

We consider a function f differentiable on the open interval e< x < b

and continuous on the closed interval a < x <:b . Since f is continuous on

the closed interval it assumes -a maximum value -1A there (Theorem. 377b). That

is, for all values x such that a < x < b we haV- f(x) < M and for at

leastbne value u we have eT.1.141,-- m . The possibialty that u is an end-
.

point of t4 interval must always-be considered: If u is an interior point

of the interval then, as we indicated in Section 1-1, for f(u) to be a
atn

maximum, f'(u) must be- 0 . Now we prove that fact.

THEOREM 5 -2a. Let f(u) ,be an extremism of f. for some value u in the

interif the domedn of f If f'(u). exists, then fT(u) .

Probf. Suppose -±"(u). 0 . Then either f'(u) > 0 or fl(u)'< 0
) - ' f(u)

Suppose f' (u). > ; then, Since f' (u)
f(Xx

lim. ,by lemma 37:14:
- u

x-u
of u. such thatthere is .a neighborhood I

:77

. r( x)
f(x) -

- u
f( > 0 .for- x in. I .

lob*

Since u is -an interior_ point of [a,b) there will then b kioints a , i3

-

P in the interval for which a < u <13" and both r_(a) and r(S) are positive.
/-

Consequently,

f(a) < f(u) < f-(3) ,

.Maximum, minimum, and extremum ( -um become a -a ih plural) are words of

Latin origin meaning greatest,.smal/est, and. outermost respecp_vely,

I.
173
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5-2

and f(u) cannot be an extremum

There is a; parallel proof for the case f'(u) < 0 .

Corollary. If f - is differentiable on the OPen, interval and
continuous on the clo-sed interval [a.,b] then the extreme val-- - are

- taken on at endpoints of the interval or at interior poj.nts where the deriva-
tive is zero.

Hkample 5-4 To deterMine' extreme values of

on the interval [0 , we obtain

Tqx

We concude that
r

- 3x2) =

f' (3) f'(-1) = 0 .

3

f(X) = 1 + x - 'x2 - x3

+ x)
t

Ho' ever, x = -1 is not a point of the Interval and we conclude that the
extreme es c be taken -on only at the, interior point

5
or the endpoiPts.

1- -32_-
3

0 and 1 We have f(0) .11 , f(-) f(1) . 0 . We conclude that the
maximum value is taken on at the interj.or point 1

and the minimum Value at
the 1 .

Example 5 -2b. In the parc= 1 post problem of SeAion 1-i w'dealt with
72the function f : x 72x2 - 3 on t .1 The derivative

- 5,.15.:.f' (x) = 144x - 12x2 is zero at till, ,--, - - . 12 . - We have f(0) = .0 ,_
.40:....- -

72 72 3f(12) = 3456 f(--) - (--) = 2985 123./ .s-'' ter this 'obs ervation we have, 5 ,,,,,- 9 125 '
.

...-

Completely proved that the solution given in ction, 1-1 doe's provide the;.
...!. .

carton of greatest capacity. We :see also that e minimum -Vatale of f . occurs,
.

.

at the endpoint x = r 0 ; that the derivative happens -to be. zero there is
.

"0"'";;;

, .

s -: .
-

Example
.

52c. Cons de thei.function f :. ---4. 1 xl on the interval

know[ -1,1] . We know that: [x I 4i10 and :that1.- gi .,,,&- 0 .-- It follow sthat .the-e'
b

minimum C)iliel on [ -1,1] .-: iszerO zincl. d'.etaken on at. x .= 0 '1 Here .is a1
_ r

case- Where an*:"extreme value -i6;taken on at an interior poirit,..,.but tfie.'cOndi-

- tion ep
, . .

S of the crollaiY do not app/y; .. I x I. . does
1.

not haVe a derivative at
: .

. - ...,

3c . 0 . We have had to, appeal to other evideice to locate,,th minimum. How-
ever I x i is differ -,cable on the open intervals (-14,410- and - (001)i. ':"----.

." lif .

:

i.rrel&vant.
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Since the derivative of- Ix! 'is, nowhere zero we conclude that any extreme
value of,..

x = 1:.

5 2 -

on [ -1,1] must be located among the points x = -1 , x = 0

With a solid theoretical foundation which was lacking in Chapter.1 we
now. have an effec:tive method .of solution for a broad class of extreme value
problems. In summary, for a function f Continuous on .a closed jinterval we
know that the extrema exist and we know.that if an ext'remium exists at an
interior point u of the interval -where. .f is differentiable then ft'eu .'

.

.To Ideate the.extreta Of f an-the interval, then, we need only try endpoints
of the interval, points-where. f has no" derivative, and points where the
derivative is zero. (Most of the function's considered here are differentiable

,

`everywhere, although in some cases there may be exceptional point's where the
deriyative does not exist.) To determine which of these points yield the
extrema we may calculate the values of the function at each point of this
restricted class; the-largest such value is the maximum value of the function
on the interval, the smolest is the minimum

EXercises 5-2a
.

Complete the proof of Theore5-2a by proving that f'(11.) 4:0

Make a .careful SketCh-an,the Interval [ 0,1] of the graph of the.
function "f : x.- x2 7- x3 given in Example 5-2a: Does the

graph confirM the conclusions of the text?':

.3. Determine-the extreme values of the function

9x4. and make a careful sketch of the graph of

Compare:yourresults with your answer to EXercise 1-11 No.

f X 44 +-4x

L. Locate and characterize the extreme values of each of the following
. -

functions on. the interval [-111]

(a) 'f --: x--0.-x2/3,.

( b )- f. x- ... ix 1 3/2
4*,

-
(a)', Three men live on the game straight road.- Where on the road should

they agree to meet so that the` of the atstances they travel along
. : -.!

the road from their homes to their eeting place is to be a..
.

minimum? -,..

1*/. , .

,..--- .-,_

Ybe,..tis the Ohswe
1r

If the number of men is four?
'',I

Answer-the question for. n :men where n is _any, positive integer:
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6. s'tone. wall 100. yards long stands..on-a ranch. Part or all of it is
%

---:tO:bel.sed in .forming a' recianguldr corral,. using an additional 260

yards of, fencing.for the-other three sides. Find the maximum area which
.

- canbt'so enclosed..

A metal can with square base and open top is reqUIred to zontain a
.

gallon: (231 cubic inches) of gasoline. NegleCting the thickness of

the metal anf the waste material in construction, find the dimensions-
.

that require the least. material.

I

. 8. A right triangle with hypotenuse 'k is rotated about one of its legs.

Find the'maximumi volume of the right circular cone produced.

Determine the lengths sides-of a triangle of maximum area with

base b ,,and perimeter p (Hint: Use HerOn's formula for the area

of'a triangle: A = ,/s (s - b) (s - c) where a ;Zip , c are the

lengthS of the sides, and s = 1. + b
2

c) = )

Local extrema.

In the preceding examples we showed how to.locate the global ext.:ems:on

a closed interval of a*fferentiable functi.on.'f .- Clearly an extremism of

the function at an. interior point of a given interval may fail to be an

extremism in the interior of-:a larger interval. However, if f(u) is en

extreme value of -f in Some neighborhood of u., then it is an extremism in'

any .smaller.neighborhood; In thig" case, we call -f(u) a.loca.71"extreLum of, f

(some.. texts use the_term relative extremism). Prom Theorem 5-2a if- f(u) is

49:.locareactremum-then f'(u) = 0ovided fir(x) exists. In seeking the.
CiE

global extrema by the method described above we shall so find the local
ti

pctrema of f .

.).Exarni5le Consider the function _f(x) = 3x + 4x3 - 1 + 5 .

have.:f'(x) 12x3 12x
2 - 24x 12x(x -.1)(k +.2) , whence:

7

fi(0) = ft(1) = f'(- 0

We tabulate the values of f at the zeros of the derivative and at the end-

points of an interval including the.zeros.
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0' 1 -- 2
...------

f(x) -27 ID 37

5-2

Ftom'the table we conclude that f(-2).- is the minimum of f(x) on the

( -3 , , f(0)

-.Since there are no

,have the appearance

a.. maximum. on- , and ..,f(1) -a minimum on [0,23

after local maxima or minima we expect the graph of f -to

of Figure'.5,2a.

.t
r

Figure 5-2a

x

Thus,* we expect f to be a decreasing function for x < -2 ; f(-2) is a
local minimum. For -2 < x < 0 the func.tion Sould be increasing and 'f(0)

local maximum. Over the interval 0.< x'< 1 the function should-decrease

agen to the local minimum f(i) for x > 1 the function should be increasing.
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5-2
,

- -

We shall prove that the inferences-concerning the-,function of the example_
,

are correA:. By determining the. positions of the local extrema of. the
. -

tion we have been able to say,a-great deal about the general character of -the

functioh. We have. utilized. intuitively the idea that throughout the interval

between successive extrema, the function must, either be increasing or decreas-

ing. .We shail.prove this result as Theorem 5-2b. In'the course of the'proof

we shall utilize a result we shall need

Lemma 5-2. Let f be a continuous function on the. closed interval

[a,b] If f(a) = f(b)Vhen there is a local extremum for -f(x) on the'

open interval (a,b) .

Proof. Assume no extremum exists on the interior of the interval. Sine

'extrema exist on the closed interval by the extreme value thebrem the extrema

of f -must occur at the endpoints. Since f(a) = f(b) the maximum and

minimum cf f must then be the same. It follows that f is constant cn,

[a,b] . Hence f(x) is an extreme value for all x satisfying b. < x < b

ThLs contradicts the assumption that f(x) has no extrsiorum on (a,b)
,

i.

The two simple results, TheOr415-2a and Lemma 5-2, constitute a basiS

.f...or the logical development of the rest of the chapter.

71morazi5-21o. If f is continuous on the closed interval a,b] .and if it

has no local extrema on the open interval (a,b) then f- is strongly
.

monotone on [a.41]

Proof. By Lemma 5-2, we have 'f(a) / f(b), hence either f(a): f(b)

or f(a) > f(b) . If f(a) .< f(b) we shall prove f is increasing on [a.,1D] .

(A parallel argument would. prove f is decreasiiig if 'f(a).> f(b)- .)

Let u , v be any two points of. [a,b]. with u < v . We want to show

that f(u) '< f(v) . The case lif(u; = f(v) is Impossible in view of Lemma 5-2

Arid thus be sufficientlto show That the assumptlecii f(u)- f(v)

results in a contraclicti6527.

We will first establish a simple' consequence of the Intermediate Value.

Theorem: if a , , T are three points in [a,b] such that

See Definition A2L4b.
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d.

(2) f(0) > f(a) f(0) > f(r)

then there exist distinct points cl _and\c,2 such that a <*c, <la c
2

and f(ci) = f(c2)-. ,CSee"Figure 5-2b.)

1

1

I

I 1 i

1

,

I I

1 I I
I

I I
I

I

1

i I
I

I

I I

I

I

I ,
I

I

I I 4
1

I 1 1 I

I 1 1 1 1

a c
1

1. Figure 5-2b

For, let z be any value less than f(p) .but greater than both' -and'

f(r) ; for example,. z . a.
[f(p) + maxif(a),f(T ))]' . Then f(a) < z < f(p)

and by the Intermediate Value Theorem there exists a
1

c e [a,13] such that

c

f(c1) = z ; likewise, .since f T) <:z < f(p) , there exists a c2 e [130]

such that f(c2) = . Finally, / 0 , c2 0', .since f(c1)'. f(c2)

z f(p) .

_

A similar argument produces the same result in the case when

inequalities in (2) ate: reversed. -
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-1 4b ,

xt, under the assumption that f(u) > f(v) , we-will exhibit two points
and "c2 .in ja,b) sucif that 'f(c1) = f(c2) It then. follows, by Lemma,

5-2, that f has a local extremum on: (a,b) in contradiction'to the hypothe-,
sis of .the theorem.

Obvio41Y;either.f(U) <,f(s) or (u) > f(a)-. Suppose first that

f(v) < f(u) < f(a) <..f(b)
'..

'473'

Weconclude ten that .a'<:v < b while f(v) < f(a) and f(v) <-f.(b) .

We can now apply_theImrevious 'observation (with Ix = a = v and jr = b

and with inequalities in (2).reversed)to exhibithe desired point] c
1

and
e

2

FiAlly, suppose that f(u) >f(a).. Then u I a so that a < u < v ,
While: f(u) > f(a) and f(u) > f(v) . Again we can apply the previous observa-

tion (with. a = a , 13 = u and y = v ) to exhibit the desired points'

c
2

. This concludes the proof of the theorem.

c
1

and

Our method for finding the,g1pbaa extrema of a differentiable function
has a useful by-product: the local extrema also are determined. Theorem 5-2b
justifies the description of the toss properties of the function given in .

Example 5.--2d.

We know that onan open interval al! the local extrema of a differentiable

function f are selected by the condition fqx) = 0 . There may be points
for which f'(x) = 0 , however, which do not correspond to local extrema 'of f

Example 5 -2e. Consider f(x) = x3 on the interval [-1,1] We have.
f'(x) = 3x2 , hence f'(0) = 0' and the derivativevanishes nowhere else. We
have f(-1) f(0),_ 0 , and f(1) = 1 . It is easy to prove that 'x3

is an increasing function, hence that f(0) is not an extremum. We _conclude

only that the graph of f is horizontal at' x = 0 , but this information is

also useful in sketching the graph. -(See Figure 57-2c'.)-
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x

Figure 5-2c

The result of the. preceding example is a particular instance of a
corollary of Theorem

Corollary 1. Let f be continuous on the closed interval' [8.510] and
differentiable on the ()lien interval (a,b) . Ifthere exists only one point
u in. (a,b) whe're fi,Su) = 0 and if either f(42.< f(u) < f(b) or
f(a) > f(u) > f(b), theh.4 f(u) is not a local extremum

' The proof of this corollary is left to you as -an, exercise (Exercises

5.72b, !To. 1)-:

To supplement Corollary-1 we give a further result.

Corollary 2. Let f be continuous on the cl o"Sed interval [a,b] and
alfferentiable on the open interval Lelt there be only One point u,

in the open interval -where, f' (u) ..0 . If f(u), > f(a) and f(ti) > f(b)
then .f(u) Is the maximum-of-f on [a,b] If7f(u) < f(a) and
f(u) <f(b) then f(u) is the minimum [a,b]

.

. .

proOf of .dbrollary 2 is left as an exercise (Exercises 5-fib, No. 1 44

4 ..,

4

Example 52f. We apply the knowledgeve gained to find the local -....-...

'wad global extremof
-

,a4pof the function

f x 4x5 5xk - 40x3 +.100

on the interval -3 < x < 4 We differentiate and-obtain4 .
,

18i 18;



f' (x)...20x4 20X3 120x 2)(x - 3 ) .

Computing the-values of. :f 'at the zeros of

Obtain the following' table.

x

and at the endpoints we

-a 3-

-197 I 212 100 I -413 -3D

Considering, triples of consecutive values of f in this table in the light o

Corollaries 1. and 2 to Theoreth5-2b we find that the function f Increases

from a local minium at x -3 to a local maximum at x = -2', then decreases-

to its-global minimum at x =. 3 and increases to its global maximum at x = 4.

(Tf we were to- consider the entire real axis as the domain of f then, since

f' has no zeros outside the. interval (-3,4) , we would conclude that f is

increasing for x < -3 and increasing for x >4 .) We can utilize the

information of the table and a few additional plotted points to obtain an

excellent idea of the behavior 'of-the graph of f on the given Interval

(Figure 5-2d): ,
In summary, to locate the extrema of a'continuous function on a closed

Interval, in the light of the precerling discussion:.we restrict our search to

the- endpoints 1ST the interval, interior points where the derivative does not

exist, and points where the derivative Is zero. r

L)
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x5 - x4- - 40x3 + 100

a. 5-2

r)
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Exercises -2b.

1. Prove the corollaries to-Theorem 5-2b.

2. For each of the following functigns locate 'end characterize all

On what intervals is:the "n.Inttion increasing? decreasing?4
(40 f-'4 :a x 4x14 8x2 + 1

(c)

_ (a)
e

f :

x_
- 4x3

x3

x
X

-(e)- f-: x

extrema.

_A -rectangle is inscribed in a.circle of radius R . Find the rectanile...
_

of maximum area; of maximum perimeter.

4, The area of the pzinted text on a page is A re dentimeters.The =

left and right margins are -each c centimeters wi , and the upper and
,lower margins are each d, centimeters t are th- most-' economical

dimensions of the paged if only the amount of paper matters?

5. A rectangle has two of its vertices'on-the x-axis and the other twd -above

it\the axis on:the parabola y = 6 - x2 . What are the dimensions of such

a rectangle if its area - is -to b_ e 'a maximum?

. A rectangular sheet of gale ized"metal is bent to form the sides end
bottam'oi a trough so that be' cross section has thib shape:

I I

If the metal is

water?

7. Find the right circular cylinder of greatest-volume that can b'e

inscribed in a-right circular cone of radius r land height- h .

1 .

14 inches wide, how deep ±ust the trough be to.-carry



LI- ,

. The lower right-hand corner of sa

tet page is; folded over so as to reach

'IL44. the left ge" in such a wa that
one int of the crease is on

right-hand edge-of the page and

the other ehdpoint is on the bottom

edge of the page as, 'in the figure.

If the width .of the page. is c

Inches, find the minimum length

of the crease.

C
ad.

....._ .

9. What is the smAllest positive value of t suCh that the slope of
,t

3

7t
) Is 'zero ?

,
. .y = 2 sink

.?
- --

_.

,

W.
..,!

----------tr10. A wall h feet high standsd fee"-- fromaway fm a tall uilding._ A2
ladde,r L feet long reaches from/the ground\trustde the wall to the
bulling. Let ,95 be the etween the ladder and the building.

Show- that if the ladder tOUc es, the to of the walQ
L =,d csc 0+ h sec 0

(b) Find the shortest ladder hat

and d = 2k .
will reach the building if h = 8

. 411.
11.1

Irian experiment repeliied n-t mes, onelobtains the numbers
"Ifr-,... 2 '-...-, a

n _for a certain nhyatCal q11,4rItity x . What value of x, should
we take if we want to:

5-2

ti-

(a) minimize the sum of'the

x - ai)2 + (x*- a )2 +
2

squares of the deviations,

+ (x - a ) 2
. ,n

-

(b) the sum of the absolute values of the deviations,
)x++ Ix -.a 21 + .... + i - an .

'l2., Find the maximum of :ey n (m ,.ri rational and > 0) if x + y = c
. .

(c constant) and x > .o>y,0
.- -4- .

.17- ,

.m n13. Find he inimum of x + y if x y = R tiy . constant) and
tional and '> 0).

.

-

1851 91:
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5-3.. The Law 51" the Mean.

Untilnow we have used derivative of 4 function only to locate extrema:

As we shall see in Section 5-4, however, the derivative ...-fT in One sense

determines the function' f almo-t completely. In order to make use of this

fact we needy an efficient way of arguing from properties' of the derivative
ti

properties of the function. The Law cf.-the Mean provides such a Way.

Statement and proof'of the Law of the Mean.

In-geometrical terms, the Law of the Mean states that on:the arc between

any two pont's of the graph of a differentiable function there exists a_point

where)ihe curve has the same slope ,as the chord. Thus, let (p,f(p) and

(q f(q) be any two points on the graph of a differentiable function-
,

with p < cf'; say (see Figure 5-3a) .

Y

q , f(q))

P

2
4 :
, Figure 5-3a

..4 .

According to the Law of the Mean thereexists a point u between
. .

where

4-

and

'The word "mean" here signifies "average". The sioiie-Of the chord is:
interpreted as average rise in. function value per rise in value of x .

The Law: of the Mean states.that.this average is 'equal to a value of the
..,-derivattive at some'point'of the interval-

.

a
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ft(u) - f(q) f(P)
q p

We can make the Law o'Pthe Mean plausible by an argument similar to that

by which we found ththe Slope of a graph at an interiorextremum is zero

(Section 1-1). _Take'lIkl'arallel to the chord at a point (1, f(u)) which lies

on the arc at:inaximum distance from the chord. Since no point of the arc lies

at a greater distance from the chord, the arc cannot cross theparallel. The

arc cannot meet the parallel at an angle for then it would,crosS; therefore the

two must have the same direction at
lu ,f(u)) . (See Figure 5-3b.)

y

e .e

;f(0)

Figure 5-3b

x

c.5

In order to derive the Law of the Mean we first prove it for the special

caste in which the chord is horizdntal.

Lemma 5-3. (Rollers Theorem). If f is continuous on the chased interval

'111o.,q] and differentiable on the open interval (p,q) andr f(p) = f(q)
then there is at least one point u in_the open interval where fi(u) = 0 .

T2-4,

Proof. From the assumption of continuity alone we have already shown .

that f has azextremum on the_open interval (Lemaire. 5-2). If u is apoini
of (p,q) for which f(u) e3aremum then since f is differentiable on

)

the open interval we know byheorein 5-2a that f'(u) = 0 .

187
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Before proving the Law of the Mean, let us examine some of the other

consequences of Rolle's*Theorem'(Lemma ;

Corollary 1. Let f be_differentiable on an interval. Ahy zeros of f

within the interval are separated by zeros of the derivative.
.64 ..

'17-oof. If x
1
< x

2
and f(x

1
) = ax

2
) = 0 , the conditions of Lemma 5-3

are satisfied and there exists a value u such that x
1 2
< u < x and

f'(u) = 0

As a consequence of this result we observe,further-that,-in a given

interval, a function may have at most one more zero than its derivative.

this fact the-re follows a familiar result:

Corollary 2. A polynomial of degree n "cod; have, nd more than xi-

distinct real zeros. S.

-The proof is left as an exercise (Exercises 5-3, No. 1).
.

From.

Example 5-3a. (i) Let us apply Corollary 1 to the zeros of

f(x) = x3 - 3x + 1 . We know that f'(x) = 3x2 3 has zeros.,at x = 1 and-

x = -1 . It follows that f may have as many. as three zeros. We observe

that ft -I) = 3 and f(1)_= -1.. By-the Intermediate 7aiue Theorem we con-
,

clude that there is a zero of f between,' -1 and .1 . Clearly we can make

f(x) negative for suffiClently large negative values and positive for suf-,,

ficiently large positive values. It follows that. f ha's a zero for x < ,1

and another for x > 1 . Specifically, we have f(-2) -1 and f(2) =.3

so that there is one-zero between -2 and -1 and another between 1 and .

(ii) The function f(x) = x' + 3x + 1 has the derivative

f'(x) = 3x2 4,3 which is always positive. Since the derivative is always

positive f can have at most one zero. Observing that f(-1) . -3 and

f(0),= 1- we see that a zero exists and lies between x = -1 and x = 0

derivative

(iii) The function f(x)= x4 4x3 - 8x2 t 64 has the

fl(x)= 4x3 - 12x2 - 16x which has zeros'at x = -1 , x = 0 'and

x =' 4 ThuS- f may have as many as four zeros.. We have f(-1) = 61

'f(0)-= 64 and f(4) = -64 . It follOws that f has a local maximum at

x = 0 and from Theorem 5-2b that f is inqteasing on the interval (-1,0);

consequently, there is no zero between, -1 and 0 . FUrther, from

O



5-43.

f(-2) = 80 we see that f has a- local minimum at x = -1 ; hence that f is

decreasing for x < -1 , and there is no zero to the left of -1 . Finally,

we observe- that f(6) = 208 ,so-that f()- has p'reciseIY,two zeros, ones

'between 0 and 4 , another between 4 and 6 .

Because the curve of Figures b is drawn' overly sirriply
it would. be easy -to leap to the conclusion that the Law ofAhe Mean
is geometrically identiC-6.1,--with Bolleis Theorem in a rotated-coordi-
nate frame for which the x -axis is parallel to the chord, but this
is not so. In such a coordinate frame we may lose the property
that the graph may be 'represented by a function. Thus, in Figure
5-3c the perpendicular to the chord from the point Oc,f(x)' of
the arc intersects the graph in more than one point. This diffil.
culty is surmounted by expressing the distance of a point, (c.,f6c)'
on the arc from the chord (the ordinate in the rotated coordinate.'
frame) as ,d(x) , a function' of the number, x in the domain of
rather than attempting to express it in terms of distance along the2.'
chord (the abscissa in the rotated coordinate frame).

y

( u , f ( u )

.(x f(x))

= g( x)

(P,f(p))

Figure 5-3c
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THEOREM (Law of ,>the Mean). If f is continuous on the closed interval

[PA] Jmnddifferentiable,on the open interval (p,q) 'then-there is at

(1)

least one point -u in the open interval where.

ft(u) -
'f(q) - f(p)

q p

Proof. It is more convenient-to deal not with the perpendicular distance
d(x) of the point (x ,f(x) on the 'arc from the-line joining its two end-

points (see Figure.5-3c) but with the vertical height h(x) of the point
above the chord. The two quantities are proportional: d(x) = h(x) cos e
where 9 is.the acute angle made by the chord with any horizontal line. An
extreme value of the One is, therefore,'an extreme value of the other. The

equation of the straight line joining the points Op ,f(14 and 0.,f(q)
is

,(2)_

)

f(q) f(P)y = g(x) f(p) (x P) q _ p

It follows for any point. x

above the chord is given by

(3) h(x) = f(x) g(x) = f(x) - f(P) P) f(q) f(P)
q

in (p,q) that the height h(x) , f(4

From this equation _it follows straightforwardly that h(x) satisfies the
. conditions Of Rolle's Theorem (Lemma 5-3) on [p,q] . First, as you may

verify directly, h(p) = h(q) = 0 . Next observe that h(x) = f(x) - g(x)
is the sum of f(x) and a linear function;" since both terms of this sum are

differentiable on the open interval, :(p,q). and continuous on the closed
interval [prq] it "kallows from the theorems on the_derivative of a linear
combination and on the sums of continuous functions,(Theorems 4-2a and 3-6a)

that h also is differentiable on the open interv_ial and continuous on the

closed interval. From Rolle's Theorem, we-conclude that for some. value u-

in '(P,4)

h'(u) = fl(u) - gr(u) = 0 ,

//
or, from Equation (3) for h(x) above,

f(q) - f(p)f'(u) = 0



5 - 3

(ii) Linear interpolation.

Linear interpolati9n is a useful methOd of approximation to the values

of a function. in anrinterval when the endpoint values are known.- If boUnds

on the range of the derivative can be obtained, the Law of the Mean gives. a

way of estimating the error of approximation.

Geometrically, linear interpolation consists of replacing the arc of the

graph of f on (p,q) by the chord joining the endpoints. Thus, on (p,q)

we approximate f(x) by the linear function ,g(x) given in Equation (2)..

The error of the approximation g(x) - f(x) = -h(x) is given by Equation (3)-i,

For our purposes i\is convenient to recast Equation (3) in the form

e(P) f(q) f(x)
p - q x - pg(x)-- f(x) =

Now by the the Mean

(L.) g

(x - p

) f(x) = (x P)IfT(u2) f'(1.11)]

where D < 11
1
< x < q , p < u2 < q . If the derivative is bounded in -7

say Ifi(z)1 < NLl .for z in (p,q) ,then from Equation (If)

Ig(x) - f(x)1 < Ix - pl("(u2)1 If'(111)1)

whence

(5) Ig(x) - f(x)I < 2M1lx P

P,q)

Example 5-3b. Let us estimate VT.15 by yinearintervolation'fonthe

function f : . Since 3 < v < 4 we takelp = 9 and q = 16:.

in Equation C2) and obtain g(10) =-22 as our estimate for VT.5 On the
7

interval (9,16) we have
4

f
1

7(x) = 1 < _<
1

.

21/7C 2.1g

Entering this bound in (5) we obtain

We observe, however, that

1272
1.1101

141
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2 484 6(-7-) = - lQ -

and we suspect that our estimate of error is rather_crude.

If on the interval (p, q) -f' has a derivative f" , the .,second deriva-
tive of f , we may apply the Law of the Neap again to the difference
ft(u2) - ft() in Equation (4) to obtain

g(x) f(x) = (x - p)(u2 - ul)fn(v)

where v is somewhere between u
2 and u

1
. Since u

2
and u1 are both

points of (pq) we know that the distance between the two points is less
than the.length,of the interval:

1 u2 ul I <q -p
Suppose, in addition, that we have a bound on the second derivative,
-If"(X)1 < M2 on (p,q) . Then we obtain an upper estimate for the error
in terms of the second derivative:

(6) 1g(x) f(x)1 < (x P)(ci /3)142 .

Ekample 5-3c. Now let us use Formula (6) to obtain an estimate for the
error of approximation to 115 by the linear interpolation scheme of
Example 5-3b. We have

1

If"(x)1 1

1

711-7,;3 < 1/7,77f

for x in (9,16) . Consequently, from (6),,

It follows that

_ i101.<.763 < .065 .

3:07 < /16 < 3.21 .

We have obtained sharper estimates for 115 and now we can repeat the

mates 'tsing p = (3.07)2 Taid q = (3.21)2.
process to obtain still sharper es

192
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Exercises 5-3

1. Prove Corollary 2 to Lemma 5-3.

2. Sketch the grpphs of the functions in Example 5-3a.

3. Is the following 'converse of Rollers Theorem true? If f is continuous

on the closed interval (p,q] and differentiable on the open interval

(p,q) , and if there is-at least one point u in the open-interval where
.

ft(u) = 0 , then there are two points m and n where p m <u< n < q

such that f(m) = f(n)

1.1/Dbes Rollets Theorem-justify the conclusion that = 0 for some value
dx

of in the interval -1 < x < 1 for (y + 1)
3 = x ?

. 2
5C.

5-- Given: f(x) x(,,oc - 1)(x - 2)(x - 3)(x - 4) . Determine how many

solutions fqx. = 0 has and find "intervals including each of these

with but calculating /fqx) .

6. Verify that Rollel4 Theorem (Lemma 5-3) holds for the given function in Z
the given interval

%.
or give a wby it does not.

° .--

(a) f : x--...x3 + 4x2 -"-17x - 10 , -[<1,2]
, ..,-

... o,

A 2 _ !

(i). f4:-.... x----... --4 Y

k.
, [-1,1]2 - x

x
..- - .

Prove that the equation

7 fCx) = xn + px +:q =.0

cannot have more than two real solutions for an even integer n nor

more than three real solutions for an odd. n . Use Rollers Theorem.

This problem can also be done without it (Exercises 3-7, No. 21).
f.

8. A functibn g has a continuous second derivative on the closed interval

[a,b] . The equation g(x) = 0 has three different solutions in the

open interval (a,b)- . Show that the equation g"(x) = 0 has at least

one solution in tie open". interval (a,b) .

9. Show that the concluSion of the Law of the Mean does not follow for

f(x) = tan -x in the interval 1.5 < x < 1.6 .

193
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.10. For each of the following functions show that the Law of the Mean fails
to hold on ihe,interval [ -a,a]- if a > 0 . Explain why the theorem
fails.

(a) f x Ix'

(b) X
1.--
X

11. Show that the equation x5 + x 3 - x - 2 = 0 has exactly one solution in
the open interval (1,) .

12. Show that x
2
= x sin x + cos x for'exactly two real values of x .

13. Find a number that can be chosen as the numbelr u in the Law of the
Mean for the given function and interval.

(a) f: x , 0< x

(b) f x 3 -1 < x < 1,

(c) f : x x3 - 2x2 + 1 -1 < x < 6

(d) f': x cos x + sin x , 0 < x <27.r

14. Derive each of the following inequalities by applying the Law of the
Mean.

(a) !sin x - sin yl < Ix - yl

(b)
2 arctan x < x if x > 0

1 + x

15. Use the Law:of the Mean to. approximate, 3,/1.008 .

Use. the Law of the Mean to approximate cos 610 .

n(

Show that a [1
a
n

+ E))
an E < a

n
---e

ee.`
na

for c > 0 , a > 1 , n > 1 (n rati6nal)

18. Using Number 17, obtain tht follow2ng approXimations.

(a) 3 +10< < a/5:7) < 3

f) 3+ 2 < 5,/,244 < 3 ±,-4-3-5-5 '

-1(C). Show that the approximation

if 3 1

÷ 5(2114) + 3 ÷

is correct to at least- 5 deci=

.194 4, Is)
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. . .

19. (a) Show that a straight line can intersect the graph, of a polynomial
/

//

.

of n-th degree at most n times.

(b) Obtain the corresponding result for rational functions.

--, (c) Could sin x or cos x be rationtk furicias? Justify your answer.
,i

/120. Prove the intermediate value property for derivative; namely, if f is_

differentiable on the closed interval [p,q] then f'(x) takes on

every value betw0_7 een '1'(p) and f'(q) in the open interval (p,q),.

11,

kt.

195
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5-4. Applications,of the Law of the Mean.
-

(i) Monotone fuctions.

In Section 5-2 we related the zeros of the derivative to.the extrema of a
function f . Here we wish to consider the properties of the derive f'

on those intervals where there are no interior extrema. As we know from
Theorem 5 -2b, on such an interval the function f must be either increasing

ecreasing. If f is increasing we do not expect to find, any points where

the slope="of the graph is negative although, as the function f(x) = X3

illustr;ates (Example 5-2e), there may be values of x for which f'(x) = 0 .

Since 1...fe cannot exclude the'possibility_that.ft(x) = 0 , there is no reason
to exclude the possibility Ishat f'(x) = 0 on an entire interval. On such
an interval f(x) is constant. To include this possibility, we have intro-

*
duced the concept of weakly increasing function.-

The monotone character of a function f is- directly connected with the

sign of the derivative f' .

THEOREM 5-4a. If f is differentiable on (a,b) and weakly increasing then

f'(x) > 0 for all x in (a,b) ; if weakly decreasing, then fl(x) < Q .

Conversely, if f'(x) >f0 for all x in (a,b) then f. is weakl

increasing on (a,b) ; if f'(x) < 0 then f is weakly-decreasinge2

.11

See Section A2-4 for a discussion of the concepts of weakly"
increasing function, monotone function, etc.

196. :71.22_,
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Proof. We consider only the increasing case here; the proof for the

decreasing case is similar.

5-4

If f is weakly increasing on (a,b) , then, for -x (a,b) and h

sufficiently small that x + h lies in .(a,b) , we have
.

f(x + h) - f(x)
h

whether h > 0 or h < 0 . It follows by Theorem 3-4f that

Conyers=

fqx) = lim f(x
h) f(x) > lim 0 > O.

h-0 h-O

_pose f'(x) > 0 on (a,b) For any two values xi

x
2

in the interval satisfying xl <x2 we have by the Law of the Mean

f(x2) - f(xl) = f'(u)(x2 - xl)

where x
1
< u < x

2
Strioe f'(U) >0 and (x2 -.xi) >0 we conclude that

f(x2) - f(xl) .2.>0 . Since f(x2) > f(xl) for any pair satisfying x2 > xl ,

the monotone property of f is establl-}red.

Corollary 1. If ff(x) = 0 for =Ill 1.-,rN s x in the interval (a,b)

'then f(x) is constant on (a,b) .

The proof of this corollary follows prom the observation that f must
-
be both weakly.,-increasing and lienkly.decreasimg, hence constant.

From the precedin;7 can see to what extent the derivative.of

a function determines the functim -, two functions g and f have the

same derivative then D(g - f) = =.--: - _-,-f = 0 . It follows from Corollary 1

to Theorem 5-4a that

where c is a constant function. Thuz

+ c .

In words, the-derivative of a function determines the function to within an

additive constant. GeOmetrically, the graph of a function is determined by

the derivative except for a possible vertical translation. This result -is

silmmerized as fbllows.

A
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Corollary 2. If two functions have the same derivative on an interval

they differ by a constant. Conversely, if two functions differ by,a constant

they have the same derivative.
A -

Proof. e proof of the first proposition is given above. The conversetis a direct onsequence of the differentiation theorems of Section 4-2.i

Finally, we observe that the proof of the converse proposition

Theorem 5-4p remains valid if all weak inequalities are replaced by strong

ones:

THEOREM 5-415. If fl(x) > 0 for all x in (a,b) then f fit increasing,

on( (a,b) . If fl(x) < 0 , then f is decreasing.

The converse of Theorem 5-4b is not true (Why not?): See if you inde-

pendently cap find a condition on the derivative of f which is equivalent

to requiring that f is stronglymonotone (Exercises 5-4, No, 14) .

(ii) The reversal of sign:test for an extremum.

In the examples of Section 5-2 we found the local,behavior of f near
a point u where f'(u) = 0 namely, whether f(u) is a local maximum,

minimum, or neither. For this purpose we compared f(u) with f(p) and

f(q) where p < u < q and p q are chosen as next adjacent zeros of f'

or,as endpoints of the interval. Since the values. of f in any neighborhood

of u- are sufficient to establish-a local property, we are led to seek a

criterion which does not depend upon the values of f at distant points; such

as other zeros of f'

THEOREM 5-4c: Let. --f be differentiable on a neighborhood of a point a for

which ft(a) = 0 . If .f1(x) reverses sign at a then f(a) is an

extremism on the neighborhood. Specifically, if ft(x) < 0 whoa x < a,

and f/ (x) > 0 when x'> a then f(a) is a minimum; if f' (x) r> O.

when x < a and f1(x) < 0 when _X >-a then f(a) is a Maximum.

(See Figure 5-4a.)
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ea*

,

. a -

___----)

1 Figure 5-4a
.4 r

a

Proof. Here we prove the criterion for a maximum. Let x be a point

of the neighborhood other than, a.. By- the Law of the Mean we have

44

ti

A

a + S

f(Ei-) - f(x). = fl(u)(a ).c) .

where u lies between a,:apd . Whether x > a or x <: a it foilows.

from the conditions of the theorem that f'(u)(a - x) > 0 . We conciUde-4:gt_

f(a) > f(x) for all x in the neighborhood.' 46-

The co fusion of the theorem remains valid if the inequalities governing

the sign of he derivative are weak, but we seldom need the theorem in that

form. (Exerclises 5-4, No. 11.) The proof parallels that of Theorem 5-4c. If

we have strong inequalities, however, we have a sharper result.

Corollary. Under the conditions of TheoreE 5-4c, the extremism of f at

x = a is isolated, that is, in the deleted neighborhood of a , we have

f(x) / f(a)

Proof. For the givenl ghborhood of Theorem 5-4c we have alrjady proved

Wheh f(a) is a maximum tha there is a strong inequality f(x) <'f(a) for

x / a . A similar argument establishes the result f(x) > f(a) for x / a

when f(a) is a minimum.

199
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To-complement tine preceding theorem we-need to km-w when f(a) is not
a local extremum.

TIMORE24-5-4d. Let f be differentiable On a neighborhood, of the point la-
_ N,,

for which f2(a) = 0 . If f2(x) has cdhstant non-zero sign throughout
.2

.

'21 fleeted neighborhood of a then f(a) is not a local ektremum.._.

J -...,

Proof. Suppose that f2(x) is positive on a deleted neighborhood of a .4.
Let h > O. be any value smaller than the radios of the neighborhood. From,

- 4Theorems 5 -4b and 5-2b it follows that f is increasing on both closed
intervals [a - h,a) and [a,a + h] . Consequently,

f(a hi < f(a) < f(a + h) .

,It follows that a can be neither a local minimum nor a local maximum.

3x7 5x4 ../E x2
+Example .5-4a. If f(x),= then

fqx)'=- 21x6 - 20x3 + 2I x . Observing-that 1'2(0) = 0 , we ask whether
'f(0). is a local minimum or maximum. To find the other zeros of f2(x) we
would have t6 solve the fifth degree equation 21x5 - 20x2 + 2-r2- =-0 . It
seems preferable to test for reversal of sign. Writing

ft (x)' x(21/ 20x2 + 21&:5)

,we observe that for x near zero the factor in' parentheses is close to 2-brf

hence positive. It follows that for sufficiently small x ,T2(x) changes
sign with x ; if x < 0 then f2 (x) < 0 and if -x > 0 then fqx) > 0

- We conclude that f(0) 93 is a loca' niinimum

N..

'Example 5 -4b. If f(x) = x8 - 7x5 + scx3 - 1024 then

f2(x) = 8x7 - 35x4 + 31rx2 and f2(0) = 0 . We test for reversal of sign.
Writing

42-

,e-...
fT(x) = x2 (31r - 354+ 8x5)

, ,. we see that t ihe factor n parentheses is positive when. x is sufficie-nly
small It follows that f'(x) is positive whether x > 0 or x < 0 . We
conclude by Theorem 5-4d that f(0) is, neither a loCal maximum nor aaocal
minimum, but that f is an increasing function in the neighborhood of x = 0 .

1.-
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The reversal-of-sign criterion, is especiallyvalpable when there Is only

one zero of the derivative in an interval. The - criterion is then sufficient

to' confirm an interior glQbal extremum'- (See Exercises 5-4. No.12.)

7

Example 5-4c. A cord of,lengtfi L has a. small ring_attached-to.one'-

end; the other end is first passed 'thi-oughthe 'ring.scit as to fOrm a loop,

then"fastened'to a weight. If the loop is passed ove two horizontal pegs

a distance M apart, jutting-out of a wall at the same 1ve1,7!tat what height

h below the level of the pegs will the weight-come'to,rest_(Pigure 5-4b)?

(It is assumed that L is" considerably longer thaw 21&,iidat--the:height of

the pegs above the, ground is greater than L , and that.,frictIon-plays no

role.)

I

Figure 5 -4b

We denote the distance between the level of the weight and the level of

the pegs by h , and the distance between the levels of the weight and ring

by y . If x denotes the angle rmed by the cord at either pe- g, then we

have

JU
h = Y 'Yt,P4 x aea-x

where we may assume 0 < x <H . We eliminate y between these two re

tions, and obtain a function f given by the equation

0- f(x) = 3z = *tan

whose maximum we seek. The derivative

fl(x) = (14)sec2 x - M sec x tan x

= (-M)sec x(sec x - 2 tan x)
2



Or,

2
t i Vis zero only for sec. x = 2 tan x, or sin x =

2
- -that is,'

o
for x = 7" .

.From the rearranged form

ft(x) _ (2) sect x(1 - 2 sin x).

we see that fl(x) > 0 for 0 s:x < and fi(x) < 0 for <:x <
3

so,
that

a

(e tan + L. - M - M sec

= L - (2)(24+

It

is a local maximum value of f It would be tedious, but not difficult, to
show that no greater value of f is attained at the endpoints of the interval
of physically possible values of the angle- x --when the ring is at the level
of the pegs Or when the ring is at the level of the weight. We observe,
however, that there is no other zero of fl in the extended domain
0 < x < so that without further test we know that f(i) is the overall
maximum and .describes the equilibrium position.

1. On what

Exercises 5-4

2
f i at-__--... 3._L_2

..

x - 2

strongly monotone? Use Theorem 5-4c to chaiaCtekike all extremes:
-..

,-4: ... . ,
.

2. Locate all intervals on which the function -

f:

f(X) = 44 + 4x - 13x2 + 18x3 - 9x4

is increasing;.decreasing. (Compare with your answer to Exercises 5-2ax
No. 3.)

203
202 7



3:.=. For each of the following functions find.-all points a for which

f'(a) = 6 . Examine the sign of f' and determine those intervals on

which j" .is strongly monotone.

(a) f(*),= -37177

(b) (x) = (1 x)4

t1(' (c). ±.(x): (1 X)

2

-5,x)x
4-'10

x2 - 5

4 . If and q are integers and
4 _ .

f(x) -7= (x'- 1)1)(x.+ 1)C1
JP
(p > 2 , q > 2)

find the extrema of f, for the following cases:

(a) p and ,q are both even.

(b) p is even and q is _odd.

('c) p is odd and q is even.
_

(d) p and ,q are both odd.

JJs

5 -4'

5. If p , q , and r are positive integers; and a <:b <: c , discuss the

graph of the function

'f : x (x a)p(x b)q(x - c)r

Discuss some special cases as in Number 4.

6. A tank is to have a given volume V and is to be made in. the form of a

right circular cylinder with hemispherical ends. The material for the

ends costs twice as much per square foot as that for the cylindrical

part. Find the most economical dimensions.

7. Find the length of the longeA rod which can be carried horizontally

around a corner from a corridor 10 ft. wide into one 5 ft. wide.

. Find a point P on the arc AB

such that the sum of the lengths

of the chords AP and BP is a

maximum ( e .
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Show how to construct a line, if possible, which passes through the point
(5,8) such that the area ci_the triangle formed in the first quadrant

is a positive,nuMber a For what values of a is it impossible to

Construct such:a triangle?

10. Find a point on the alt4tude of an isosceles triangle such that the sum-
of its distances frOm the vertices is the smallest possible.

1,1. Let f be differentiable on'a neighborhoodof a point a- for which
f' (a) = 0 . If f'(x) < 0 when x <:a and ft (x) >0 when x >a 1
then f(a) is a minimum. If, f' (x) > 0 when x <a and f' (x) < 0
when x >a then f(a) is a max,imum. Give a proof.

12. Let f- be continuous on the closed interval [alb] and differentiable
on'the open interval (a,b) . Suppose u is the one point in (alb)

where f2(u). = 0 . Prove that if -f2(x) reverses sign in a neighborhood

of u then f(u) is the global extremum of f on [alb] appropriate
to the sense of reversal.

13. Give' a function .f such that f(1) = f(2) 4 , and such that f"(X)

exists and is positive throughout the interval '1 x <-3 .

(a) What can you conclude about f2(2.5)?_

(b) ProVe your statement, stating whatever theorenis you use in your

proof.

14. Let f be a.aifferentiable functioton '(a,1;X' . Prove that the require-
. ment that f be ilacreskising is equivalent to the condition that f= (x) >04

everywhere but that every interval contains points where ,f'(X) >0 .

A 15 .
i

Given that- f is everywhere differe iable. If for all x such that

f'(x) 0 , t(x) < f(0) , prove tharf(x) <f(0) for all
.

X >0 .

16. A function ,g is such that le is continuous and positive in the

interval (p, q) . What is th7e maximum number .of roots of each of the

equations g(x) = 0 -and g2(x) = 0 in (P,q) ?

Prove yoxir result and give some illustrative examples.

17. (a)

A())

ti

If f' (a) show for values of x. in a neighborhood of a- that,

if x > a then f(x) > f(a) , and if x < a then f(x) <!f(a)

Give an example of a function f for which f2(a) >0 but which

Is not increasing in any neighborhood of a , no matter how (small



5-5

5-5- Applications of the Seconcl Derivative.

. ) Second derivative test-for an extremum.
:

Reversal of sign of the first derivatdIve is a sufficient condition for an

'extremum (Theorem 5-4c). As we survey the-graph of f from left to right in

a neighborhood of. a , if first ft(x) is negative for x < a , next

f'(a) = 0 , finally fl(x) is positive for x >a then we know that f(a)

is a local minimum. Tozgparantee a minimum at a , then, it would be

sufficient to demonstrate that f' is increasing or t neighborhood of a .

To ebtablih the increasing character of f' and hence that f(a) is a

minimum it is sufficient by Theorem 5-4b to show that the derivative. of ft ,

the second derivative f" of f is positive on a neighborhood of a,.

Actilnily it is- enough to know only that f"(a) -> 0 as we now prove.

Tki.e..OREM 5-5a. Suppose f' (a) =.0 . If f" (a) >0 then, f(a). is a local

minimum of f . If f"(a) <.0 then f(a) is a local maximum of f .

:

Proof. We consider the c- ase f"(a) > 0 . From the definition of,limit
.

and

fu(a) = lim ft(x) ft(a)
x -ax-a

_

we know that for a sufficiently small deleted neighborhood of a

f2(x) - ?Ca) 0%'
- a

This inequality implies for x > a that ft x) - ft (a.) > 0, and for x <a
that f/(x) -.f1(a) <10 . Observe that.this.proves the result of Exercises

5-4, No. 17 for ft . But this condition assures a minidum
/
by Theorem 5-4c.

Example 5-5a. In. Example 5-4c of the weight suspended from a string

.looped over pegs we found for the derivative of the height function

fq
2x) = (--) sect x(1 -2 sin x)

and thus showed that x = g- is the only zero of h' r in the relevag0 domain.

-We test for an extremum and obtain

f" (g) -M sec
2M

Since ev < 0 we conclude that f(i) is a 16q.al maximum, and space

is the only zero of ft we conclude that the-maximum is global.

205 211
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-Mcample 5 -5b. 'Let us find the extreMa of

f(x) 4x5 + 5x4 -20x3 - 50x
2

- 40x .

We obtain the first and second derivatiires:

fl(x) = 20x
4
+ 20x3 60x

2
- 100x - 40

= 20(x + 1)3(x - 2)

and

20 {(x + 1)3 + 3(x + 1)2(x - 2)]

= 20(x + 1)2(4x 7 5)

The-zeros of f' occur at x = -1 and x = 2 . We attempt to apply the

second derivative test and obtain f "( -l) = 0 , f"(2) = 540 -. It follows that

f(2) is a local minimum. The criterion of Theorem 5-5a gives us no informa-

tion about f(-1) (but we observe that there is a reversal of. sign of f'.

from.positive to negative so that ,f(-1) is a- local maximum).

(ii) Convexity. .

The sign of. the second derivative corresponds to a useful geometrical
-3.property of-the function. If f".(x) >0 on an interval, then as x increases

the graph flexes upward (Figure 5-5a). If f"(x) < 0 , then as AP increases

"Y

9

upward flexure

y

-downward flexdre
_

.

-Figure 575a' Figure 5-5b

the graph-flexes downward.. The geometrical concept of flexure does not

require that f have first 'and second derivatives and we define the concept

slightly more ge41-ally.



DEFINITION 5-5: The graph of the function .f is said to be

flexed upward .on an interval of the domain if no point on any
. .

.

chord to the graph lies below the corresponding arc. The

graph of f is said to be flexed downward if the graph of
... -

-f is 'flexed upward..-In either cae, we say the function f

is convex ofi the interval.

->)

5-5

Note that this definition includeS the limiting case o- a straight like

which is consideeto be f lexed both upward and downward.

The idea of convex fUnction is closely linked to the geometrical concept

of convex set. A set of points is convex if, for each pair of points in the

set, the set contains the entire line segment joiningthen. Thus the interior

x
2

4- y
2
<1 of a .circle. 2ircle. is convex; the exterior x + y2 >1 is not. This

Idea can be expressed analytically as follows. If a and b ar'e two points

of the number line then x. is a point of the closed segment joining them if

sand only if

x = ea + (1- e)b

for some'n=ber 0- satisfying 0 < B <:1 Similarly if (a,b) and

hre two points of the plane, the point (xly) is on the closed segment

joining them if and only if

x = ea + (1 -

ly = (1 - e)13

(a,o)

for some e satisfying 0 < .e < 1 The verification of these-assertion'S

is left as Exercises' 5 -5, No. 14a. \

Figures 5-5a, b make the connect-on between convex sets and convex

functions evident y if the graph of f is flexed upward then the set of

points D.--gibT-re tie graph is a convex set. Here the set' D of points above

the graph for an interval I In the domain of the function is defined by

14,
Definition 5-5 can be expressed in analytic terms as follows. Let f

be flexed upward on t interval 1 . Let 'a and b be points of I . We ,,

.

represent a point (x,y) of the chord joining (1,r,(44 to (b, f(b)) by

((x,y) :xeI and y> f(x)) .

1?; (ea + (1 - e)b , ef(a) + (1 - e)f(b))
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where 0 < e < 1 . The ;statement that the graph y = f(x) is

flexed upward on I is equivalent to

f(ea 4- ( 1 - e -<0f. (a) + (1 0)f(b)

for all numbers a . and b in I and all e satisfying

0 < < 1 .

.

Example 5-5c. The graph of y = easily shown to be flexed
upward;

TO"

where 0 < 0 < 1 .

(ea + (1 - e)bI < Ieal.+

< eial

i(1 e)bI

(1 - 19) 1bl'

THEOREM 5-5b. Let f have a second derivative on the open interval (a,b) .

The graph of f is flexed upward on (a,b) if and only if f"(x) > 0
on the interval.

The theory convex f tions and convex sets is an elegant and use-

ful subject but to prove any of its significant results would lead us too

far from our main theme. We lea to the exercises the proof of Theorem

5-5b and the derivation of some of the preliminary results of the theory.

The exercises require a subtle interweaving of geometry and analysis.

After exploring the pr;Doblems of this section, you may wish to extend

your knowledge by.00lla4eral readings.

,

Far the theory of convex sets, see Yaglom, I.M. end Boltyanskii, V.G.
Convex Figures. Holt, Rinehart, and Winston, 1961. For applications see
Glicksman, A.M. An Introduction to Linear Pragrammine. and the Theory of
Games. Wiley, New York, 1963: For the theory of convex' functions at a more
advanced leyel, see Hardy, Littlewood and Polya. Ineaualities. University
Press, Cambridge, England, 1953.



Exercises 5 -5

1. For each
g
of 'the following functions,

and state the intervals on which

ate and plaracierize all extrema

ction is it breasing (decreasing).
1

On what intervals is the :graph fl!xed upward? ,downward?.-

(a) f : x x
2

+ x
.

S'

-2

(b) Ot : x
2
2

+ .-.x- ,
.

(c) f : x --dwx1/2 ;- 1/2

(d) f : x--1...x3 ax
2

+ bx + c

2. Show that the graph of the function

f : x-- +3 x 5 cos 2x

is flexed upward when. f(x) < 0 and flexed downward when f(x) >0 .

3. Find and characterize the extrema of the function

f: x x sin x+ cos x

on the closed interval [0,-7c] . On what intervals is the graph of the

function_ flexed downward? upward?

4. (a) Assume that the-function f(x) has a local maximum at x =a ,

where fr(a) = 0 , and f"(a) 0 . Determine conditions on a

functibn g , assumed differentiableT such that gf(x) also has

a local maximum at x = a . -

(b), What are the corresponding conditions for a minimum?

Use Theorem 5-5a to locate and-classify all extrema of the ftiln,4ion

f : x(1 + cos x)

on the closed interval [-st,st] . On what intervals is the graph of the

function flexed downward? upward?

6. Let f(x) = x - sin x . Does f h Aany extrema? Justify your answer.

7. Let f(x)
sin x Does .f have any extrema in the open interval

(0
'2
21) ? Justify your answer.

8. At what point of the positive x-axis is e angle subtended by the two

points (0,3) band (4,7) greatest?

20921v



9. Suppose that

f(n) (a) 0 .

is,'which kind

odd.)

f(1) f(2)(a)e_ f(n-1).(a) = 0 but that
Determine whether f(a) is a local extremum, and if it

. (Hint: consider separately the cases n even and n

10. Prove that if the graph of f is flexed downward on an interval 1
then the set, D of points under the graph is a convex set.

. Prove that a necessary and sufficient condition that the graph of f be
flexed downward on an interval I is that for each point a in I , the

." slope of the chord joining a point (x,f(x)) to the fixed point (a,f(a))

is a weakly decreasing function of x on I . (See Figure 5 -5a.)

112. (a) Let f be differentiable and its graph be flexed downward on an
. interval I . Prove that the function

(t)

0(x)

f(x) - f(a)
x - a

f'(a)

x a

x = a
a

is weakly decreasing, where the fixed point a is any interior

point of I .

From the result of (a) , prove that a necessary and sufficient

condition that the graph of f be flexed downward on I is that
ft be weakly decreasing.

13. Prove Theorem 5-5b.

14. (a) Let x and y be ;'two points on an,in

function f . Shod that a point is on

(x,f(x)) and (Y4(Y)) on the graph

coordinates are

(ex + (1 -9))r- ,ef(x) + (1 -

for some 19 such that 0 < e < 1 .

(b) Show that Definition 5-5 A
asserts that

t al I in the domain of a

the chbrd\jofning the points

f ff, and only if, its

e)f(y))

f ffexed'upward on I if,

and only if, for all x and y in I and all e such that

< e ,

f(ex (1 - e)y) < ef(x} 4- (1 - 9)f(y) .

210.2 1



5-5.

(c) Use (b) to show that the graphs of the following functions are

flexed upward.

'(i) f : --wax + b

(ii) f

f : 17

15. (a) Derive the following property of convex functions. If the graph of

f is flexed downward on an interval I , then for all points a ,

b in I and any positive numbers p , q

f (12112EL ) >':Pf(8) qf(b)
P+ q P q

In words, the function value of a weighted average ismot less than

the weighted average of the function values.

(b) Prove that this property is sufficient for downward flexure.

. 16. Prove that if f is continuous, then a necessary and sufficient condition

for its graph to be flexed downward-is that

a + bN f(a)cN+ f(b)
f ( 2 ) > 2

17. The graph of a function f is flexed downard and is positive for all-.

. Show that f is a,constant function. Do not assume fT exists.

18. Under what Circumstances will the graph of a ftinttion f and its inverse

both be flexed downward? one flexed downward and the other upward?

Answer this question both with and without calculus. N......n

.1,
19. If either of D2kF(x) or D2Fk--) is,of one sign for x > 0 , show that

the other one has the same sign. Interpret geometrically and illustrate

by several examples.

20. If F(x) is flexed upward and F(a) = F(b) = F(c) where a < b.< c ,

show that F(x) is constant in (a,c)

21. Show that an increasing convex function of a convex function-is convex.°
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22. (a) Let a , b , and c be,oints in I such that a < b < c, and
suppose that the graph of f is flexed upward in I . -

Show that

A (b)

A (c)

f(b) < c b f(a) + b a .C C a

(Hint' use the result of Number 15.);

hence,

f(a) > c a
f(b) b ac-b c-b 1/4

cfr) > c a f(b) - b
1/4

f- a 1/4 b - )

If -the graph of F is flexed upward in a closed interval, show
that F is bounded in the interval.

Show by a counter-example that the result in (b) -is not valid-for
.itn open interval.

A 23. (a) If the graph of F is flexed upward in an open interval, show that
F is cahtinuous ip the interval.

(b) Sh.. w by a'countex-example thatsthe result in (a) is not valid for,
a clog interval.

1124. If the graph obi f is flexed upyard in an interval, then f possesses
left-'and right-sided derivatives at each interior point of the interval
(Exercises 4-2a, No. '?).
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5-6. Constrained Extreme Value Problems.

In this section we treat the problem of finding the extreme value of a

function of more than one variable subject'to certain side conditions or

5-6

constraints.

Example 5-6a. Problem: to find the point or points nearest to the origin

on the parabOla.

We wish to-minimize

4y2 - 16y - 12x - 75.= 0 .

the distance of (x,y) from (0,0) , namely

d(x,y) =1277

dv

subject to the constraint,,

ex,y) =4y2.-:16y - 12c 7- 75 = 0
1

However, to avoid dealing with square roots, we may equivalently minimize

f(x,y) = x2 4-y2 = [d(x,y)]2 .

Let us assume, that x is implicitly defined by the

entiable function o y , to is, x = 0(y) where

set: u

y yields

g(0(y) = 0 .

f(0(y) y) v = 40(y) nifferentiation

constraint as a differ-

because g(x,y)

en.
= 8y -.16- dx

dy

is constrained to be a constant,

dx

For an extremum, we

du
equations 0 and g(x,y) = 0 , or

gives

2x +2y .

d,Y ay

du 2 ,

3
2xy

du
must have ' = 0. -

3Yx ,

)x- + 3y)

d. also

with respect to
-)

Simultaneous solution of the two

14y
2

- 16y - 12x = 75
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3 - 6

shows that the y-coordinate of each extreme point must satisfy

- 50y + 300 .

We factor: 0 = 8y2(y - 6) - 50(y ..- 6) = 8(y2 - 6) .

y- have corresponding x-coordinates x= _

The roots

15 9
2 '

Computation of the distances from the origin for the three possible extrema
5is-the nearest point, at a distance of- Eshows that (- -

(Figure 5-6a)

a*The general idea of a donstrained extreme value problem of this type is
easily visualized. geometrically. We wish-to find the extrema of f(x,y)
subjFt to the Constraint g(x y) = 0 . We may-think of f(x,y) in a three-
dimensional frame of reference-as the height above the x,y-plane of a point
on the surface z = f(x,y) . The equation g(x,y) = 0 may be thought of as
the equation of a cylinder (whose elements are parallel to the z-axis) which
meets the surface aloig a curve. The extreme value problem is to determine
the high and loW..points of this curve. The general situation is depicted in cft

Figure 5 -6b. In Figure 5=6c we show the picttre for Example 5-6a.

Figure 5-6a
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Figure 5-6b
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Figure 5-6c
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5-6.

A natural approach to the constrained extreme value-problem,
i.e., find the extrema of f(x,y) subject to g(x,y) = 0 , is to
solve the equation g(x,y) = 0 to express one variable in terms
of the other and to substitute this.expression in f(x,y) . The
problem is then reduced to the ordinary one of extremizing a func-
tion of a dingle variable. As we have indicated in Section 4-8,
,however; such explicit representations are often difficult or
impossible-to obtain (furthermore, if obtained they may not be
particularly useful).

We consider the probleurofimaximizing a.function of three variables

subject to two constraints in order to show how the techniques an be extended

\_.-ti6 more complicated cases.

Example 5-6b. In Example 5-4c we might have introduced 'the quantity z

which represents the difference in level between the ring and'the pegs (see

Figure 5-4b, p.201.) and reformuldad the problem as the problem of finding

the maximum of

= y z

if y and z are subject to the constraints

M = 2z cot X L = M # y + 2z csc x .

Of course, we could eliminate

before but we need not do so.

of -z and,obtain

z and y and obtain the same problem as

This time, we treat. x and y. as functions
-

h' = y' + 1

and from the constraining conditions we obtain

22 cot x 2zx' csc-x = 0

csc x - 2xTz csc x cot x = 0 ,

7 . -

since L , M are constants. From the first of the equations we obtain

-zxr = coex sin x

and substituting for zx' in.the equation for yT we obtain

yT + 2 csc x(1 - cos x) = y/T: 2-sin x
27,
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C
'The condition for a maximum then becomes

)

hl = 1 = 2 sin x = 0

which.yields the same condition as before.

There isno special merit for preferring the present treatment of this
1

.problemfto the earlier one. Our only purpose is to show that elimination is

not necessary should it be inconvenient ors difficult.

The next example is/cautionary.
4-

Example 5-6c. Given 15_,yarc4_of.fencing, 1 decide to plant one square

and one-circular flower bed, and to surround. them with the fencing.' What

should be the dimensions of the'two fences so as to contain flower beds, of

greatest possible area?

We express the problem in terms of the side s of the squire bed and the

radius r -of the circle, leaving them in the implicit functional relationship

Subject to this constraint,

4s i--2xr = 15 .

and r- are to be chosen so a.to maximize
. .

A = sa xr2 .

Denoting derivatives with respect to s by a 'time, we obtain
C

' 4 + 27r ' = O and
;

= 2s

Setting A! ='0' and eliminating r' we obtain: the,condition'for an extremurL

ABecause of this Occurs when 8r + 2;tr.=-15, br

r (6
15

2x) S (8 +027r

The sum of the corresponding areas is 11:85 sq. yds. (to two places after'

the decimal point).
-

We take the usual precaution'of checking the end-points_of the intervals-

of physically: possible valUes of r and s If r = 0 , then s -15- and

15we have a single square bed of area -14.06 sq. yds.; if s 0 , then r =
QJL

and we have a single round bed of area 17.90 sq. yds. Both exceed the sum
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of areas found by the method of implicit differentiation, which in fact Is a

local minimunt. It appears thatthe problem has no solution in the terms posed;

a squ;are and a round flower bed together wilt never encompass as great-an area

as a single round bed whose perimeter equals the total ngth available.

This example reveals one of the. weaknesses of the method: If there should

be an endpoint extremum it may be concealed by the formulation of the problem.

In the next example, we use the method to find an extremum when too few

constraints are imposed by the problem. In that case we introduce an arti-

ficial constraint.

. ,Example 5-6d. We return to {the postal problem.ofSection 1-1, to find the

linear dimensions z , x , y , of a carton which maximize the volume

(1) V =zxy

subject to-the constraint

(2) 2z + 2x + y = 72 (y >x. and y > z) ,

(i.e., the length y of the longest side plus the "girth" or perimeter of the

cross-section prependicular to the longest side is fixed.) In the solution

to this problem in Section 1-1, we indicated that to achieve 'a maximinum we

must haye square ends: = x. condition served as the extra constraint

necessary to complete the solution. Now we proceed. in a different way.

We take as an unproven assumption that there exist dimensionS z0 x0 ,

yA. which maximize V If we knew. y we Could then take y = y0 solve'
- .

t- he problem as an ordinary constrainer ,extreme valUe problem. in x and z
: .

We:do not know y
0

but we can impoSe the artificial constraint

(3) .y=k,k constant,

and solve the'extremevalue problem subject to this extra constraint. For each

choice of k we obtain the largest possible v alue V ; this association will

ordinarily be expressible as afunction of It

Finally, we determine

f : k 61-V .

so that V = f(k) is a 'Maximum.



In..the above problem, then, we begin'with the constrained extreme value
1 -

problem, to maximize V as given by (1), subjectto the constraints (2) and

(3). We assume that z is a function of x . Differentiating with respect.

to x we obtain the condition, for an extremum
A

dV dz
(4) y = y(x -4-z).= 0

subject to

(5)
. -

2dx +2=dz
+ 2 = 0

where we have employed condition (3) to set --"Irc = 0 in these differentiations.

'From (4) and (5) and the observation that y = 0 certainly does not maximize

V , we obtain

Z = X

which is the Condition that the box has square ends. From this point on) the

solution is conventional.

Finally, it should be remarked tnat.the second derivative can also be

comidUted by-implicit differentiation, but that this ususaly.entails further

-complication. Moreover, the most we can do with the second deriirative is to

infenthe,nature of a local extremum. Even if there is just- one extremum

found by this method, we cannot conclude, as we could in Exercises 54. N9.12 ,

that it is global. As we already remarked in Section 4-8, the problem,mity

define riot one but several implicit functions and it is possible that a global

extremum does not exist, or is\an endpoint maximum for an implicit function
434

other than the one,- for which a -local extremism was found. An example is given

by the equation:-

x3 - x2y -
x2

- y2 + y = (y - x (y - + 1) =

which had as its graph the parabola y-= x2 and the line y = x - 1
(Figure 5-6d). Our tePbriquelocates a 16Cal minimum of 7y at x = 0 oh

the branch y = x2 but misses the fact that the graph considered as a whole

does-not have a lowest point. In general, before hard and fast conclusions

can be drawn for any given problem of this type a deeper investigation is

necessary.
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Figure 5-6d

Exercises

Z.
1. (a) For a given volume V find the dimensions of a right cylindrical

tin can with smallest surface area.

(b) If the cost of the sides,..top, and bottom of the can is a cents

per square inch, and if the.cost'of the bead joirting the top and

bottom to the side is b cents per linear inch, find the most

economical dimensions of the can for a given volume V .

2. (a) A cylindrical sheet-iron tank without top is to have volume V .

Let h be the height of the tank, and r , the radius of the base.

The side oI the tank is to be constructed from stock costing P

dollars per square foot and the base from stock costing Q.' 'dollars

per square foot. Find the radius and height4bf the tank for which

the cost of material in the tank is minimized.

(b) More realistically, suppose that the base lEas to be cut from a

square of side 2r . ind the dimensions yielding minimum cost

including the cost of material trimmed away.

221 2 .
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3. Find the radius and height of the

cone of greatest vc4ume theft can

be made-from a circular sheet of

radius r by cutting a wedge from

the center and bending the remaining

portion to form a cone.

L. A point P is at a distance h above the center C of a sphere of

radius r , where h > r . A.cone is constructed having P for vertex,

and for base the circle formed by cutting the sphere with a plane perpen-

dicular to PC .- In order to have the volume of the cone as great as

possible, should this plane be above or below C ? How far?

5 A long strip of paper 8 inches wide is cut off square at one end. A

corner A of this end is then folded over.to the opposite side at A' ,

thus forming triangle' ABC . Find thearea)of the smallest triangle that

can be formed in this way.

44. 8'

\./

C

6. C Let the generAl-equation of a straight line L be given in the form

'ax + by = c .

Find the point Q on L for which the distance to a given po*.nt

P not on L is a minimum. Prove that the line joining P to Q

is perpendicular to L .

(b) On the'Curve C given by f(x,y) ;:je let Q be the point nearest

to a point P -not on the curve. If Q is not an endpoi of C ,

and all necessary derivatives exist, prove that the li joining

P to Q is perpendicular to C .

2
7. Find extrema of x

2 + y- if x and y are subject to the constraint

x
2

-;12x + y
2

- 8y + 51 = 0 . Give a geometric interpretation.

8., If x > 0 , = 1 , 2 , , n and xi + x
2

+ x
n

= S (constant),

find the maximum value of the product x2 . x
n

. (assuming it ...

exists).
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5-7. Tangent and_Normal Lines.

In Section 5-3 we discussed the approximation of a differentiable function

f on an interval by the linear function g which agrees with f at the end-

points of the interval. We obtained estimates of the error with the aid of the

Law of the Mean.

Here we consider a linear approximation to f in the neighborhood of a

point a . For this purpose we use the linear function

h(x) = f(a)-- ft(a)(x - a)

whose graph passes through (a,f(a)) and has the same direction as the graph

of f at x = . The line

y = f(a) 4- fT(a)(x

is called the tangent to the curve y = f(x)- at x = a (see Figure 5-7a).

a

Figure 5-7a

Example 5-7a. The parabola y = -}" x2 x goes through the point

(1,4) with a slope m = 2 The line tangent there has the equation

y = 4 2(x - 1) .

Elimination of y from this equation and the equation of the parabola yields

1 x2 5 (2x 2) = (x2 - 2x + 1) = 1(x - 1)2 = 0 It follows that2, 2

the parabola and its tangent line me nly at 1,4) .

223-
....



5-7

Example -5 -7b. We can always choose the coordinate axes sd that the

equation of a circle has the form x2 + y2 = r
2

, where the positive constant

r is the radius. Implicit differentiation gives, for the point (a,b) on

the circle, the slope m = a
'The tangent line has the equation

y = b - 2(x - a) ; we can rearrange algebraically, using the fact that

a
2 + b2 = r

2
to obtain the more symmetrical form

ax + by = r2 .

In geometry, the line tangent to a circle at one of its points was defined

as the unique line through the point that meets no other point, af the circle.

This. definition would not serve for the parabola of Example 5-7a (Why noto

-In a neighborhood of the point of tangency, the line tangent to.a graph

y = f(x) does usrAlly have the property that the curve lies on one side of

the tangent. However, at special points (the points of inflection discussed

in Section 5-8), the curve may cross its tangent. Thus the curve y = x3

crosses its tangent at x = 0 .

441
In case f has both first. and second derivatives in the neighborhood of

a we can easily obtain estimates for the error of approximation to the graph

of f by the tangent line.

We find for the absolute error e , using the Law of the Mean,

e = If(x) - f(a) - fT(a).1(ax - a) I

If2(z).(x - a) - cl(a)(x - a)

where z is some value between x and a . Thus,

e = If'(?) - fl(a)I lx - Al

and, applying the Law of the Mean again, we obtain

e = If"(u)1 lz - al lx al < If"(`u)1 (x - a)g-0

where u lies between z and a . If it is possible to obtain a bound for

f" in a neighborhood of a , say le(x)ICM2 then we obtain the error

estimate Cr

(1) e < M2(x - a)2 .

This estimate for-the error is to be compared with the estimate for the error
of linear interpolation (Section 5-3,ii, Equation (6)). °

2*-
* This property gave rise to the 'term tangentderived from the Latin

word tangentis which means touching.

224 .
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Example -7c. An estimate of the error in approximating. f(x) = x by

the, equation of the tangent.at x = on the neighborhood a : 5 < x < a + 5

is to be found.

We have f"(x) = 6x for all

Consequently,

If for example, we

, so that,

= 61x1 = 6I(X

6(lx

< 6(5 + jai) .

e < 6(jaj

< 6(1a]
52

- a) +al

lal)

Mb.

take a = 5 , S = .1 we see that the error in estimating

f(x) is less than .31 in the approximation of a function value near

f(5) = 125.

The tangent.at

on the neighborhood

take any other line

where .m f' (a) , t

error of approximation

a -ithe "best" linear approximation to the graph.of f

of x = a in a sense which is easily understood. If we

passing through. (alf(a) , say,

where z lies _between

continuous,

as close to

Iff(Z) ml

K = ]fifl(a)

by K . We

(2)

Y = f(4) ',(Dc--

from the Law of the wean we obtain for the absolute

r..

= If(x)' - f(a) - m(x - a)!

= !V) -Hml lx - al

x and a . Since f' is differentiable it is
.

and by taking x sufficiently close to a we. can make f1(z)

f'(a) as we wish: Since m # f'(a) we can guarantee that

is greater than, 'same fixed positive queLtity K (say,

- ml) by taking at small enough. Denote this quantity

then have

e > Kix - al ";

It follows from (1),and (2) that

142
ale < ix - al e ;

that is, by taking x sufficiently close

error e of approximation by the tangent

by any other line as small as desired.

225
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In many problems we are concerned not only with the tirection of the

curve as represented by the tangent line, but also the direction perpendicu-
lar to it. For instance, each water particle at the front edge of a wave
advancing on a beach moves along a path perpendicular-to the edge (at least
approximately). The line through .(a,f(a)) perpendicular to the tangent line
is defined to be the line normal to the curve y = f(x) at (a,f(a)) , or
just the normal-NZ-the point -.(a,f(a)) (Figure 5-7b).

Figure 5L7b

If fl(a) = 0 , then the normal is simply described by x = a' Other-
wise, since the normal ,is Perpendicular to the tangent, the;ilope fqa) of
the curve and the slope m of the normal. must satifythe,.relation

.

(3)
-

mf'(a)=

and the normal has the equation

y'= f(a) -

The equation for__.e.th.--Yrcr_may also be written in the form

x = a - f/(a)[y - f(a)]

which is valid for all values of f'(a) , zero included.

The.relation (3) is proved as Theorem 2-3b, SMSG Intermediate
Mathematics, p. 133.
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't7; /Exercises 2..7

. V.7r.-
I. Show that the number of tangent lines that can be drawn from the point

2
(hck) to the curve y . x is two, one, or zero according as k is

-

5-7

less than h2 , equal to h
2 , or greater than 112 , respectively.

2. Find equations for the tangent and normal lines to the graphs of the

following functions at the given points.

(a) f : sin x , x = 0 , x =

f : (X) , x = 2 .

x
2 ,

3
(c.) f : x -1 , x = 0 .

1 + x

(d) f : , x= x where lx01 1
x2 - 1

(a) For the ellipse

and the hyperbola

x
2 2

2
+

2
= 1

-

P q

2 2
x
2 2

P q

obtain equations of the lines tangent at (a,b) on each curve in a

symmetrical form like that of Example 577b for the circle.

(b) For the same two curves, obtain equatiOns for the normal lines at

Sa,b)/..on each curve in an analogaus.form.

4 Proye: The line tangent to -.the circle of Example 5-7b at (a0b) .on

the circle meets the circle at no other point.

Show that the gi--aphs of the functions .f and g 'where f : x 6x2

and g : + 2 have a common tangent line atthe point (1 6)

Sketch the graphs.

6. If f 2
'+ bx + c (a / 0) , show that the tangent line to the

graph of f at-the point (p,f(p)) is parallel'to the chord joining

the points im,f(m)) and (nf(n)) only if orp =
m + n

2

7. Given the ellipse b
2
x
2

+
a2y2 a2b2

and anfarbitrary point P on the

curve -but not on either axis. Prove that if the normal at P to the

-ellipse passes through the origin then the ellipse is a circle.

227
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8. Comment on the footnote in Chapter 1, Section 1 -1, page 6.

9. (a) Estimate the error of the approximation to y = sin x by the
tangent at x = 0-.

-_
10.

(b)- Show that the error is at.least third order in

Ix.- sin xl < ClxI3

where C is constant.

Compare the methods of this section with the methods of Section 5-3 in
Example 5 -3b and Exercises 5-3, Numbers

11. Show how to approximate 2n + 1 and estimate the error of approximation.

12. The location of an object at time t on a straight tine is given by the

lx 1
i.e., that

law of motion

= 5 sin 3t - sin 5t. .

After it was starteC;when does the particle first reach a stop? HoW

far is it then from the starting 'point?

13. Find an equation of the tangent line to the folium of Descartes

at the point

(0,0) .

(xo,Yo)

x3 y3 - 366ally =0

''Note particularly the situation et the point--

14. Find. an equation of the tangent line to the graph of the equation.
,

Dc
2

x1/7c7 2y2= 6.

at the point (4,1),.

a.
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5 -8 . Sketching of Graphs .

The problem we set for ourselves here is to obtain a-sketch of the graph

Of a function, a picture which reveals the important general features of the

graph but which need not be a precise point-by-poini representation.

In coordinate geometry we saw that the x-intercepts (the solutions a of

f(a) = b or zeros of f ) and they- intercept f(o),, yield easily plotted

reference points (a,0)' and . (D,itO on the graph of f (Int. Math. p. 145).

Moreover, we learned tests for SyMMAry with respect to the y-axis and the

.origin, and observed that we can construct the entire graph of a symmetric

function from the portion lying in.a halfplane (Int. Math. pp. 147-148). We

observed further (Section A2-1) that the graph of a-function with period p

can be constructed from the; portion of the graph over any of length

P

Frain the calculus we obtain more information. Most of the functions we

deal with hee are differentiable to all orders on an interval. Such a func-
.

tion must be continuous and we know that its-graph has no gaps. Furthermore,

since the first derivative is continuous the.grah is smooth; in pai.ticulari

--there can be no corners like that of the graph y- Ix' at the. origin. Almost

always the zeros of the derivative are isolated; that is, each zero, has a

neighborhood in which,no other zero of the derivative appears. From Theorems

5-2a and 5-2b we. then know that the graph of f is stronglymonotone-between°
. -

successive zeros of the derivative. Furthermore, byobserving the rise and

fall of the values of the fUnctiOn at successive zeros of the derivative we

can determple which are extrema. With this informatioit we can obtain an

excellent idea of the appearance of the graph.

We may wish also to incorporate information from a study of the second

derivative. Thus, it is geometrically intuitive that if a curve is convex in

a neighborhood of x = a then it does not cross the tangent at x = a (see

Exercises 5-8, No. 11a). The curve y = x3 does cross its tangent at x = 0 ,

but as x increases there is a trans ion t x = 0 from downward flexure
4

for x < 0 to upward flexure when x > 0 -ee Exercises 5-8, No. 11b). At

such a point olltransitiom we must have f"(a) = O if,the second, derivative

_exists. These considerations suggest that such special points be singled out

for consideration in a description of the gross properties of a fUnction. In

particular, we introduce the concept of point of. inflection:. _
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DEFINITION -8. If f" is strongly monotone in ,the-neighborhood

of a , and f "( a) = 0' then

inflection point of f .

(a,f(a)) is defined;to be an

The two.possible cases are illustrated in Figures 5-8a and 5-8b. For the

most part the zeros of the

will in general consist of

- the flexure reverses sense.

-.

second derivative will 'be isolated and the graph
-convex arcs.separated by points of inflection where

Figure 543a

Example 5 -8a. The Function f(x) = 4x5 f 5x14. - 20x3,- 50x2 - 40x of

'Example 5-5b

Or(x) - 20(x

and at x =

downward as

At x = f"(x) is again zero, and

inflection point at (1.25, -142,8) ,

has the second deriveitive which may be factored:

O

(4x - 5) . The graph of f is flexed downward for x < -1 ,

-1 the second derivative is zero but the curve remains flexed

also may be seen from the fact that f(-1) is a local maximum.

now it change ign. There is an

and the curare changes from downward to

upward flexure, remaining flexed upward on the.portion. x > of Its domain.

The concept of asymptote, a line approached by the graph for large values

of or y was-introduced in the study of the hyperbola:

simple criteria' which help to locate horizontal and vertical

thos of the equilateral hyperbolas 5cy.= k (Int. Math. pp:

230

We give

asymptotes like

346-347).
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In rough terms, an asymptote may be defined as a line which approximates

a given.curve; both in position and direction, a% large distances from the

origin. It is the idea of "large-distances fram the origin" which needs

clarification.

The simplest case is that of a horizontal asymptote, y = c . The line

y = c may occur as an asymptote-to the graph of x in two ways: for large

positive values of x or for larige negative values of x . In precise terms,

y.= c is an asymptote of f for large positive values of x if for every

e > 0 it is possible to make f(x) - cl < c by taking x large enough.

In other terms, for each E > 0 we must find a value w for which the condi-

tion is satisfied when x >-a. For example, to prove that the hyperbola x7.1

has the asymptote y = 0 for large positive values of x , we observe that

provided w >
E

If(x)
1

< e

Clearly, in describing an asymptote we have defined a new kind.of limit.

We write

(1) lim f(x) = c
xl-co

if for every E >0 there exist a value w such that

ci < e

whenever

x >

The expression (1) is read "as x approaches infinity the limit of f(x) is

c ." The traditional word "infinity" does not signify anything mystical or

vague here. It only means something in context, and in this case the context

is precisely stated. In a similar vein, to describe asymptotes for large

negaIive, x we say "as.

c" and write

approaches minus infinity the-limit of f(x) is

lira- f(x) = c
-co
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if .for every c'>0 there exists a value w such that

whenever

If(x) - ci < c

X < 41 .

In thts 3. unit notation, the condition which 'defines y = c as an
-asymptote to = f(x) for large positive x can be written

. f(x) = c..
x-00

Example '-8b.

f(x) 4 +
(x 3)(x 1)

4
This is a typical case for a rational function.. We find the horizontal

asymptotes,.if any,-by comparing the leading terms of the numerator and

denominator (see Exercises 5-8, No. 12). -In the fraction above, the degree

of.the denominator is greater than that Of the numerator and we conclude%that

the fraction approximates zero for large positive or negative x . It follows

that .f .basthe..asymptote .y = for both large positive and negative x .

The precise epsilonic,proof is left as.an exercise.

vertical asymptote x'=-a can only occur_at a point, a. , where f
is discantinuoui because If(x)i exceeds. any_ given positive real value for

-x in some surficiently small deleted'neighborhood 'of- á'. For a vertical
1.asymptote; it-is sufficient-to shag that approximates zero when x is

near. a .

Example 5-8c. For the function of the previous example we have...

1 (x + 3)(x - 1)

(4,x2 + 9x - 12)

.and f
1

approximates 0-for x near -3 and f'or x 1.. The- lines

x =- -3 , x = 1 are vertical asymptotes (Figure 5 -8c)-.

2;r.
232
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In
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J.-

Figure 5-8c

Oblique asymptotes are also easily defined; the appropriate condition

that the line y = mx b be an asymptote to the graph of f for large

poditive x

lion if(x) - [mx F. 0 .
x-co

5-8

If the graph of y =/(x) has -a slant asymptote it'is easy to verify that the

slope of the asymptote is given by

1m = lim Eg 2c
X

(Exercises 5-8, No. 14a)- On the other hand th(lImIt'may-exiat although the

.curvemaY,not have an asYmptote (Exercises 5-8 '! 4.14-b).

With the wealth of auxiliary inforMation obtained by the methods described
/ .

above, the plotting of relatively few points is sufficient to obtain an

adequate sketch of the graphs of most functions met in applications. Here

we give a checklist of the information.

A. 7f(x) determines: -

.1. the domain of definition.

2. the ,x- intercepts- -the zeros of f(x) --and the.y-dmtercept--f(0)

(For a curie in implicit form g(x0y) = 0, the x-Intercepts are

the zeros of g(x10) , and the y-intercepts arethe zeros of
.

g(0 y) .)
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symmetry with respect to the y-axis if f(k) =.f(-x)., with respect
to the origin if f(x) = -f(-x) . (For a curve in implicit form

there is symmetry with respect to the x-axis if g(x,-y) = 0 when-
ever g(x,y) = 0 ; with respect to the y-skis if g( -x,y). = 0 when-
ever g(x,y) = 0 ; with respect to the origin if g(-x,-y) = 0 when-
ever g(x,y) = 0 )

4. periodicity.

B. f(x) also determines:

1. a horizontal asymptote y = p to the right if

lim f(x) = p
X-03

2. a horizontal asymptote y = q to the left. if

lim f(x) =

'3. a vertical asymptote x= a if 1
approximates 0 in a deleted

neighborhood of a .

4. aslant asymptote y = mx + b to the right if both limits

m = lim f(x)
and b = lim f(x) - mx

x-ce x.-00

exist.

. .f'(x) determines:

- 1. an interval on which f(x) is increasing if fi( ) > 0 <weakly
increasing if f'(x) > 0 ) on the Interval.

. s2: an interval on which f(x) is decreasing if fitx) < 4 (weakly
decreasing if f'(x) < 0 ) on the interval.

3. a maximum value f(a) if° ft(a) = 0 and f'(x). changes from
positive to negative at a

4. a minimum value f(a) if ff(a) = 0 and f'(x) chabligeS from

negative to positive at a

D. f'(x) and f"(x) determine:

1. a maximum value f(a) if fi(a).= 0 and f"(a) < 0 .

2.' a minimum value f(a) if ft (a) = 0 and f"(a) >;0 .

E. f"(x) determines:

1. an interval-on which the graph of -f is flexed downward if
f"(4 < 0 on the-interval.

2. an interval on which the graph of .f is flexed upward if

f"(x) >0 on the interval.

an inflection point (alf(a)) if f" (a) = 0 and f" (x) changes
sign as k increases through the value a .

234
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It is a good procedure to prepare for the sketch of a graph by making a

table in which pertinent items from the above check list are presented: Do

71911 calculations _separately from the table, so that only those data are shown
which go directly into the sketch.

Example 7-8d. We give a complete checklist-for the function

f(x) =
(x 3)(x of the previous two examples:

x-intercepts: x = -3.19 , 0.94

y-intercept: y = 4

horizontal .asymptote:. y =.4 to left and to right

vertical asymptotes: x = -3 and x = 1

intervals of decreasing f(x) : x < -3 , -3 <: x <: 1 , 1 <: x

downward flexure: x < -3 , xa c x < 1 , where xi is the abscissa

of the inflection point

upward flexure: -3 <. x < oca y 1 <

inflection point: K,f(X3)) , where x13. 4- 9xi 4- 6 = 0 ; to one

place after the decimal point, -0.7 <xi< -0:6

The sketch, Figure 578c,has already made use of ail'tbis information.

Note -that intercepts, extrema,:or inflection points may be only

approximately determinable, with an accuracy dependent on your skill in.

approXimately solving tie appropriate equation f(x) = 0 , ft(x) = 0 , or

f"(x) = 0 ..

Example Draw a graph of f(x) ,= cos x - 2 sin x for.
0 . x < 2n . Here f'(x) = sin x --2 cos x ; f"(x) = -cos x f 2 sin x -f(x).

Zeros of f(x) (and simultaneadsly of f"(x)) are numbers x for which

tan x = 1
; zeros of f'(x) are numbers x for which tan x = -2 . Numerical

values have been taken from a trigonometric table., rounded off to two places

after the decimal point.

x-intercepts: x =.0.46 , x = 3.60

y-intercept: y = 1

minimum: f(x) = -2.24

maximum: x = 5.17 , f(x) = 2.24

Intervals of decreasing f(x) : 0 < x < 2.6 , 5.717 < x

'intervals of increasing f(x) : 2.03 < x < 5.17

235
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inflection points: same as x-interceptsi
intervals of downward. flexure:1 0 < x < 0.46 , 3.60 < x < art
intervals of inward flex-Lire: O.1-6 < x < 3.60

.

The points f(x) for x a multiple of are also easily plotted, and were

used in the construction of Figure 5-8d.

Finally, we sketch an implicitly defined curve (Figure 5-8d).

Note: the graph of f : x cos x - 2. sin x could have
been obtained more easily by noting that

2
sin = 15 cos (x + a) ,

cos xcosx-2snx= -(5

where cos a = 1 , but for the sake, a. illustration we have
-15

proceeded in a more complicated way-.

- Figure 5-8d.



Example '-8f. Draw the curve with equation + = 1 . Only points
in the square Q < x < 1 0 < y <1 can lie on the graph. Implicit
differentiation gives

'or

and for th second derivative
-ar

Dx(DxY)

Dry

2-127 2 Iry-

Dr3.- =

Dx.Y -.Y , )6J-11.7 Y1
2 y

x2 2 y 2x

1 x ./R7 ../Tz 1

x2 2 x3/2 2 x
7f

The checklist is quite short:

x -intercept: y =,1

y-intercept: x = 1

interval wher- e y decreases: 0 < x < 1

interval of upward flexure: 0.<: x < 1 .

,1 1.
"With the plotting of one. additional point (T,T7i.

made (Figure 5-8f).

, the sketch is easily

237 2 4



1. Draw the graph of

Exercises

f : xe.4x5 5x - 20x3 - 50x
2

- 40x .

(See Example 5-8a.)

2. Locate the point.of inflection on the graph of f x '(x + 1) arctan x .

3: Determine equations of the horizontal and vertical asymptotes, if any,

of the graph of

.

(a)

(b)

xy +yrx

x2y - 3x 2 = 0 .

4. Find horizontal. -amotAFVFELTates, ms ima, minima, -and inflection;

points; Show all tests used to iaent ,eac such pOint and draw the

graph of the function.

(a) f : x 2x + 1

(b) f x

Use information about extrema andiaexure;to draw the

.graph

f(x) .-x13-7372

. Draw the graphs of the gilien functions making use of extrema and informa-

tion about flexure:

x3
(a) f .

(b) f : cos
2
x +-2 cos x .

(c) f : x arcsin

Discuss symmetry, intercepts, asymptotes, extrema, intervals of flexure,

and sketch the graph.

(a) f(x)-- 2(x 2)
x
2

, (b) f(x) = x2/3(x -

238



5-8

8. draw the graph of x2y +.xy2 =-1

(a) rlatermine-horizontal and vertical asymptotes, ifaty.

(b) Locate the...axis of symmetry and the ,point of intersection of the

curve with this line.

(c) Show that the curve has one and only one

classify this point.

9. Show that th7/funttIon
ax + b
ax + d

maxima or-mibimp,regardless of the values of

10. Prove that the inflection points of the graph

extremism and locate and

, - .

(assumed non=ponstant) has no

u.

a'

4

2rt , 2 x 2the curve k 41. + x j = .tx .

a b

of -y

c , and d .

= x x lie on.

. -

(a) Prove that if a curve is differentiable and flexed downward, in an

interval, the curve lies wholly under its tangent lines in this

interval.

(b) Show that the graph of f crosses its tangent, at

a point of Inflection.

(c) Let f(x) = xn where n is a natural-number.'' For whatyalUes of

n if any, does-the graph have inflection points?, Give sketchs

.x =.a if a is

comparing the graphs for different values

Fora rational function given by

a xP + a .x.tr-""

- P p-1

b +.b xcl71 +
q qH1-.

where ap bq

I.

of n .

+
a0

0

0 , find conditions for the existence of horizontal

liMit, lim r(x) ,411, lim r(x)
x-co

asymptotes, i.e., conditions that either

exists.

1\13. For what values

ali1 real values?

of a does the function f : 41110 x

x

Sketch the graph of the functia.;efor

+ 2x + a

+ 4x + 3a

this case.

assume



14. (a) Sketch the graph of the function

f : xs
- x - a

x
a # 0

and determine all the horizontal, vertical and slant asymptotes.

x2

x
(b) In part (a), the slope of theislant asymptote is him

x-a

Show .that for the .function

f + x - x > 0 ,

x a

)the lim f(X
exists, although the graph has no straight line

x -a
x

S.asymptotes.

AiiiScellaneous Eicercises

1. Show that two tangent lines-to the graph of y= = x3
through the point'-(4,1) . Find their equatidns.

. A
2.' Shaw-that the tangent line to the conic-section

ax2 +-2bxy + cy2 + 2dx + 2ey + f = 0

at a point (xO,y0) on-the curve has the. equation:

ax0x + h(yox x0y) cycy' d( xo x) 4- e ( 4, y)

A 3. For what points (h,k): can one draw

(1) two tangent lines;

(ii) one tangent line,

(iii) no tangent line

to the graph of
(1

(a) x2 +.3xy + y2 = a
2

, a > 0).

-(0) 3.X2'+'Xy + Ey2

(c)5x + 5Y = /Er ,

2
= a

(a >o
0) .

2.4
240
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i. Determine equations of the horizontal and vertical asymptotes, if any,

of the graph of

(a) )cY2 4Y x

(b) xy - cos., x = 0

5. Sketch the graph of

(x - m(a)
(x /

b)
n

; m. , ,n integers, m n > 1 2 a / b .
-

. ,

2 Cx - a)m
(b) 'y = ; m , n integers, m , n > 1 , a i b .

(x - b)n ,

(c)
(x - a)m(x

(x - c)P

(q) y2 _ (x --6)M(X' -

(x c)T)

;m n,pintegers,m,n2p> 1 2a/bic.

2 n p integers, m n p> l,

6. In past SMSG writerpt conferences it has been observed that when the

number of writers on a team is 28 or greater, all tile available time

is spent in discussion between members of the group, so that no w ing
gets done. Assuming that in a group of x (28 5Nr >. 1) ch

2
participant is engaged in writing 40[1- (21-t) hours per week27
determine the size of the team which maximizes the total number o hours
the group spent writing. (Draw-your own conclusions about the team, hich
wrote this book).

7. A picture h feet high is Placed on'a\wall with its base. b feet Bove
..\

.-the level .of the observer's eye. if h7; stands x fegt from the wall,

verify'that the angle. of vision 0. subtended by the picture ipgiven by-
...

-

_. x _
b

x0 = arccot-,----
b
- arCCO-G .

. 10!1t

Show that to get the "best" view-of the picture, i.e.-1 the lailgest.angle

Of vision, the observer should stand Ilb(h;.:1- b) feet away from the wail.
f.

, .. ,-.. ! - - L.--, .-.. , _,....,..

4-
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8. Let ABC lbea right triangle with AB perpendicular to BC , the length

of AB = h , the length of BC = 2x'. Let AD be the median to side BC .

Determine x so that the angle .e between the median and the hypotenuse

of triangle ABC is a maximum.

9. The location of an object. an a straight line at time

1-17711a

S At - (1,+ A )-t'2 .

is given by the

a that the abject moves forward initifoly, when A is,positive, but

ultimately retreats. Show also that for different values of A.' the

maximum oossible distance that the particle can move 1
is a.,

A
10. A man standing at the edge of a cir

4
a Point of the way around. the col in the -least ssible time.- He-

plans to rzua along the edge of the ooi for some distance and then swim

"straight to his destination. If he can swim

run 21. feet .per second, how fax should he rim before 'diving in?

aiti:mmIng pool Wishes to_reach.

20 feet per second and

A conicalcup with radius r , heigtit h , is filled with water. Find

theradius R of the sphere which displaces the largest volume of water

when jammed into the cup.

4

4s
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Appendices

These appendices contain primarily three kinds of materials: matters

which you are presumed to have studied before and may use for review or to

acquire the necessary knowledge-;-matters alluded to in the text and amplified

here; matters which are normally studie7Pin later courses but supplied here
-

for reference if you would like a brief account for completeness.

Appeneiy 1 contains reference material on'-theAkreal number system.

.Appendix 2 contains reference material on functions;, relations and their

graphical representations. Appendix 3 desci=ibes the "ethod of mathematical

imduction which is essential%for mathematical literacY but is often neglected

in the secondary curriculum. It is assumed that you are conversant with most

of -Chi& material br:w411._become so as the course progresses. The later

appendices contain material which would be of of place in the text either'

because it constitutes'an interesting digression or because it is normally_

studieileat the next higher level. With the aPpendiges many of the gais.,left
(/in. the text-may be-reduced or eliminated-alogether...

dr*
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A1-1

cAppendix 1
AN.

THE REAL NUMBERS

. We assume that yiall are familiar -with the real numbers represented as

infinite decimals and as points of the number line (Intermediate Mhthematics).

For the calculus, it is especially important that you master the material

on inequalities and absolute value. If you are at all unsure of yourself,

:work through, this material thoroughly. Many oethe results obtained in the

exercises are allUded to in the text.

Ai-1 Algebraic Properties of the Real Numbers

We let AL denote the set of real numbers and represent the elements of

it, by lower case (Roman) letters, a, b, c, The real numbers constitute

an algebraic system in which addition, mul 'plication, and their. inverse

, operations, subtraction and division (exce by zero) can be performed. Such

a system is known as a field. The field properties of R. are summarized in

the following laws.

Closure

(1-) (a + b) -a AZ ab c R..

If a and b are real numbers, then their'suM an8f,produ6t are real numbers.

Commutative Laws

(2) , a +b=b+a, ab = ba .
. 44*7 -

A sum or product of 'two real numbers is independentof the order in which they

are taken

Associative Laws

(3) a + (b +c)7= b) + c, -a(bc):=- (ab)c.

24-5



A1-1 a

A sum or product of three real numbers is independent of the way in which they

are associated in pairs.

Distributive Law

(4) a(b + c) ab + ac .

Multiplication is distributed over a-sum..

Identities

There exist real numbers 0 (the additive identity) and 1 (the multiplica-

tive identity) such that

'(5) a+ 0= a, a 1= a.

Inverses

Each real number a has, an additive inverse, -a , "the negative of a"

such that

(6a)

Each real number

of a", such that

*
a + (-a) =

except 0 has a multiplicative 1
'

itive inverse "the reciprocal
a

(6b) a.(43) = 1 (a t 0) .

Finally, we require that 0 and 1 are not, the same number.

(6c) o

Subtraction and Division

The operation/of subtraction is defined by

(7a)

and division by

(7b)

a - b = a + ( -b)

a(b)1S.-. "b, , (b 5(

We shall not attempt to derive the entire catalog of familiar prOperties

of -the real. numbers implied .by (;) - (7). The derivations of a number of these

properties are left td you in exercises. 'There is one fact, however, to

.2 -5
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which we wish to give prominent attention:

DIVISION BY ZERO CANNOT BE GIVEN ANY MEANING.

If b ( 0 , the statement (7b) assures us that is a real number;

about the case b = 0 the statement.is mysteriously silent. The fact is

that it is impossible to assign a single definite value to f, consistent

with (1) - (6). In proof we show first that

(8)

We have

a - 0 = 0 .

- 0+a. 0= a(0 + 0)

= a 0

Put a = a 0 . By the preceding result

hence

and.

that is,

.a + a = ,

a

- Tor + a) + a + (-a)

A1-1

(Distributive Law)

(Additive Identity)

a + (a + (-a)) = a (-a) (Associative Maw)

a +. 0 = 0,

a F.- 0

(Additive Inverse)

(Additive,Identity)

In order to define division -2yzero we must be able to.find-a "reciprocal

of zero" under the definition of (6b), i.e., a number- a such that

However; from (8) we have

0 a = 1

1 a . 0
.

.at

in contradiction to (6c). It follows that'division'by zero is meaningless
and cannot be made mepringfUl. The attempt to.define division by zerO'leads!
to a contradiction.

247 '25'-`.



Exercises A1-1

1. Verify:

(a) that the natural numbers are, not closed under subtraction and

division.

(b) that the rational numbers form a field.' sy

(c) that the operations of subtraction and division on the reals are

not commutative or- associative.

2. Prove: For any real number a , -(-a) = a .

3. Prove: For any real number .a , (-1)a = -a .

Prove:- For any real numbers a and b

-(a + b) (-a) .+ (-b)

5. Prove: For any real numbers' a and,. h.

(--a)(-b) =!..ab .

6. Prove: For any real.nutbers a and b,

ab = 0 if and only ifera.= or = 0 .

(or a = 1;. 0) .

+ b
'

7. Verify that the numbers a
2

where a and are rational numbers,
,

constitute afield. .



A1-2 Order Rel ions on the Real Numbers (Inequality)

The field relations are not only satisfied b

A1-2

y the set R. of real numbers,

but also by certain of its subsets including the set of rational numbers (see
Exercise Al-1, No. lb).

the field C. of complex

numbers of the form a +

Furthermore, R. itself is a subset of a number field,-

numbers, which may be thought of as the set of all

bi where a and b are real and i
2

-1 . The

real number system differs from the complex number system in one
1
important

relation of inequality. The

summary.

respect: it is possible to order the reals by a

properties of an order relation are given now in

There is an order relation in' 1. , denoted by a > b (read: "a is

greater than- b") with the. following properties:

Trichotomy

Each a and b satisfy one and no more than one of the following relations:

a >la , a b , b> a .

Transitive Law

If a > b and b >c then a > c .

Addition Law

If a > b , then a+ c >b+ c

Multiplication Law

If a >. b and c -> 0 then ac > be ; if a > b and. c < 0 , then be > ac

It is often convenient to write b < a (read "b is leSs than a.") for
a > b . If a > 0 , a is _said to be positive; if a < 0 , a is said to
be negative; thus,.from the law of trichotdmy a real number is positive,

zero, or negative.

The two expressions a >b and b < a describe the same relation and

neither is generally preferable to the other. We shall speak of a > b and
b- < a as strong inequalities.

Two other. relationships which we sharl\ise are the inequalities a >b
and b < a (read-"a is greater than:o/''equal to b" and "b is less than
or.equal to a", respectively). The first of these, a >b , means that either
a >b or a = b ; the second , b < a , means that either b < a or b . a:

the two inequalities represent exactly the same relation. (Sometimes, for
emphasis, the relation a < b is called a weak inequality.)

211.9 2. t1
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By the law of trichotomy, each a and b in R. satisfies one and no

more than one of the following relations:

a >.b , b >a .

Thus, we note that' if a > b , then a. > b--; also, if a = b then a > b .

By the transitive property:

(i) a > b and b > c , then a > c

(ii) If a > b and b > c. , then a > c

"(iii) If a > b and b > c then a > c .

We obserYe that in (ii) and in (iii) the symbol II > II representing

strong inequality appears, hence we-use the strong inequality in the con-

clusion "a > c".

In more general application of the transitive property the symbols " > ",

" > ", and " = " may appear several times in a chain of reasonings; care =best

be exercised in selecting the symbol in the last step to insure that the

conclusion is valid.

Example A1-2a:

If a > b , b '> c , and c = -d , then a > d

It is convenient to write

so that the valid conclusion "a > d" is apparent. (Note: we did not,

write a >b > c = d. The valid conclUsion is not "a = d"; therefore, we

shall avoid this form.) ,

Example A1-2bf

If a>b,b>c,c=c3_,d>e,and e>f,then a>f.
We write

a > b > c > d'> e >f

which shows that the strong inequality "a > f" is valid. We obserye that

the symbol > " for strong inequality appears at least once in the chain
G

and hence we may use it in the final step. Note that within the chain we

avoided writing c = d , but used c >d as in the preceding example.

In our discussion of the transitive property we have uSed the symbols

> , > , and = , but the statements also'hold if the symbols > and '> are

replaced by '< and < , respectively. A word of.caution is in order. We

considgr the expression



Al- 2

b < a .> c

as completely meaningless (an eXampIe.of what you should never write).

We leave the well-khownic:rNoperties'of order for you to derive as exer-

cises, but there is one .property -which -,..re derive-here as a useful example
of such derivations:

THE SQUARE OF A NON -ZERO REAL NUMBER IS POSITIVE.

If a > 0 , then from the ltiilication law

that is,

a a > 0 a ,

2a > 0 .

-if a < 0 , then from the addition

+ (-a) < 0 + (-as

law,-

and from the properties of the additive inverse and identity we obtain

0 < -a .
.

Thas (-a) is positive and by the preceding argument (:-a.) 0 . We know,

in general (see Exercises A1-11 NO. 5), that (-a)(-b) = ab . Setting b = a

in the last relation, we have (-a) 2 . a2 . It follows that a2 > 0 when( -a)2

a is negative, and our argument is complete.

Am.
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Exercises A1-2

1. 'Prove: For any real number a :

(a) if v a > 0 , then 0 > -a

(b) if 0 > a , then -a > 0 .

2. Prove: For any real numbers

then a+c>b+d.
c , d if a > b and c > d ,

.

3. Prove: For any real numbers a b , c , if a > b and c <*0 , then

bc > ac .

Prove: .

(a) For any positiveumbers a ,-and b , > b if and only if V> b2 .

(b) For any negative-numbers a and b a >1) if and only if b2 > a2 .

5. Prove: For any real number a and any positive number b

(a) a2 > b if and only if - a- > IS or a <

(b) a2 < b if and only if < a <

6. Prove: If a > b > 0 and c > 0 'then ac >

7. Prove: For any real numbers a and b if ab > 0 then either

both a > 0. and b > 0 or bov.-1 a < 0 and b < 0 .

8. Prove:. For any real nu-r2--.er a

(a) if a > 0 , then
1

> 0 .a

(b) if a <0 1then < .
a

a c,
.For bd 17< 0 show that < if and only if ad > be .

. 10. Show that for two positive numberS a and' b ; if a -> b , then

ProVe that-the complex numbers form a

order relation on C .

field C and that there. can be no

12. The field 7 of numbers of the form a + b,f2 where a and b are
rational numbers has the ordering relation >, because 2 is a subset

of R . Show that 7 is also ordered- by the relation > where

a + big c + d,r2 means that

a - big > c -

252
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13. Show that for all real numbers x and y

14. (a) Prove that

x
2

+ xy + y2 > 0 .

+,y)2 > low ;.

(b) For positive numbers a and b , show that the arithmetic mean

Is not less than the geometric mean which is, in turn, greater

than'or equal to the harmonic mean:

a + b ,4717 2ab
2 + b

When does equality hold in this relation?

15. Find all values of x for which

ax2 + 2bx + c > 0 ,

Discuss all possible cases.

16'. Observe that

(aix + b1)2 + (a2x + b2)2' 54.

a 0 .

(a
nx +bn)2 ;

then use the solution of Number 15 to prove the Cauchy inequality

2 +822 +.a.2) fb 2+1) 2(alb, 4-a2b2 + +a_bn)2 <(al +b )1 2"

with equality, if, and only if, ar = kbr or b
r

=,0 for r = 1 , 2 ,

n and k , some constant.

_"j. If al , a2 , an are positive numbers, show that

al "2 + an

1 1 , 1+.. -t-
al a

2
a
n

(Arithmetic Mean) > (Harmonic Mean)

This generalizes Exercise 14b.

18. Prove the general triangle inequality

jx2.2 x22 -4 x2

""

41 2 2 if
Y2 Yn

2
Y1)24: Cx2

.. + (xn - Yn)2
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Al -3 Absolute Value and Inequality

The absolute value.of a real number a , written lal is defined by

a if a >

= 0 if a = 0

-a , if a- < 0 .

If we think o'-the real numbers in their representation on the nunfber line,.

then -1 al is the distance between 0 and a (gure Al-3). In general, for

any real numbers a and b , the distance betwe'en a and b . is

la - b 1

1 al-- t Ibl

1-

a

Figure Al -3
.

lb al '= la -. bl .. If x lies wRhin the span -c < x < e -- where c > 0 ,
+.-then clearly x is no_ farther_ from the' origin than c and we have

-1 x1 < c . Conversely, if Ix! < e , then -c i< x < c It follows irmnediately. _

that

(1) < x < I x I

(See Exercises A1-3, No. 13a.)

P
From the inequalities

we obtain

whence

- al < a <
I al and --1b1 <b < 1bl

- ( 1 a 1 + 1bl) <a+ b < lad + 1bl

(2) la + bI < car + .

254
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(This relatiori-fis known as the "triangle.inequality.1). In w..rds,,te abs61-Lite
-

value of a sum of two terms is not greater than the sum of-the absolute value

oflphe terms. Since any sum can-be built up by successiye additions;the

"result holds in general, viz., :/

la+ b ci = 1(a b) +ci

< la + bl .k1

< lal + 1b1 1c1

We say that- y is an upper estimate for x , and that mx 4's a lower,
estimate for y if x <:y'. In (2) we have found an upper estimate for the

absolute value'of the. sum a b_. It is often useful to have a lower estimate
-

which is better than estimate 0 . Such an estimate can be

obtained from (2) by the devic of setting ke o seng a.= -I- y and then setting

vib = -x and b = -y in turn. We then obtain

IYI - Ixi < ix + y

IY1

Since 1.1x1 1y1j: is one ortheother of the values Ix1

we have

< lx + yi

(See Exercises A1-3, No. 115.;)

Special Symbols: .

The symbol max(ri,r2, r_) - denotes the largest of the numbers

r1,-r2, similarly, the symbol r2, rn) denotes the

YII < Ix

1 I . or

ir

Y I -3Ixl-
t

smallest of the numbers.

Example 5k1-3a:.

-..ax(2, 8, -3, -1) = 8

min(2, 8;,-3, ,10) = -10

max { -a,

" 355
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Exercises .A1-3

1..' -Find the absolute val-ue of the fgllowing nUmbers:

(a) -1-75

(b)

(c). sin. :(-t- ) .

- (d)

. (a) For what real numbers x ,does ?=

(b) For what 'real numbers x does 11 xl = x - 1 ?
.

3. Solve .the et:rustic.

(a) (3 =1 .

(b) 14x 4-3( = 1 .

(c) Ix 4- = x

(d) + 24 = ix - .

(e) I2x + 51 + I5x 4- 21 =.O .

(f) 12zc + 15 -x(
(g) ,2(3x + -I- ix - 2( =1 + 13 x( . .

4 For what values of x is each of the following truce? Express your
answer in terms of l_nequalitlfes satisfied by x .)

12x 7 3) <1
(g) 1x- - al <
(a) 1x2 - 31 < 1 (s) kin xl =.0
(±)- [(x - 2)(x 3)1 > (t) [sin x-1 > 2

,r2-

\
(j) 1* II > Ix -.31 1 :r\

- q1 ( x- 2 = 1

< ix2 -

Ix <

- al < 6

(k) Ix - 51. +.1 = ix + 51

1

. (v) ITTIC

)



Sketch the graphs of the following equations:

(a) . Ix 11 + = 1 .

(b) yi .+. yl =2

=

y

Y =

6. (a) Show that if a > b > 0

a
ab

b <+

(b) TbuS, show that for positive numbers

< min(a,b) is satisfied by

7. (a) Show for positive'a: , b that

a
2
+ b <-max(a,b) if- a

(b) .Prove for all a , :b that

max-(a,b) =

(c) Prove for all a , b that

8. Show that

min(a,b) =-Eta b

a and b the conditon

5 -
ab

a + b

bl)

max(alb) -F max(c,d) > max.(a! + c ,

9. Show thae if ab > 0 , then ,

b > minfa2

.10. Show tlirat if a = max(a,b,c) then -a = .

11.. Denote min
Ial a

2
a

b1 b2 bn brby min and similarly for max.

.

, If br > 0 , r = 1 , 2
2.
n , prove that

a + a 4- + aaa
,2

...
n--

a.

min (-Z). < max brbr _ max
r,

)r -

<
b
I
+ b2 + ... + bn

257 23:2



A1-3

Prove that

1
n

1 +- 2
2
+< 2 , 2<1 .for n = 1 , 2 , 3 ...-,

n + - 1) 4- . . . 22 + 12

13. (a) Prove directly from the properties of order for e-> 0 that if
-e x < e then lx!. < e . ConverselY if Ix! < e then
-e-< x < e .

Prove that jf x. is an element of -An ordered field -and if
I xl <.

for all positive values E , 'then- X = .

Prove th.a. t 1 ab I

Prove that 1.1171

that 1x - y 1 <15. Prove

16. Under what conditions do the .equality signs hold for

I lg-1 - I 1,a + bl < !al + 1bl

lx

-

17. If 0 < x < 1. , we can multiply both aideS -of the i'nezzality x < 1 b
x to obtain x < x. '(and; similarly-,:we can show 'that
x14. < x3 , and so Use this result to show that if
then ix

a + 2x1.< 31x1

Prove the following inequalities:

Ca) + x > 2 x > 0 .

(p) _ x +
1 < -2 x < 0X

Cc) x +
x

>2 x 0

19. Prove: x2 > xlxl for all real

20. Show that if lx
.Li

a l < < - , then

ILL ixi

2

21. Prove for positive a and b , where a A b , that

2 41
- al a + b

(a b) 2 < lb a
12

ara--b

for all
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A1-24- Iritervals, Neighborhoods

An interval of the number line is anyeset of real numbers ich contains

more than';. one member-and.:Which has the property that if a _.. are

elements.of the Set, then so is every real number x etween. them. i.e.,

x fo. -which a < x.< b . It iseasy to verify tha- the folLOwing are

ervals. - ,-.

1. The segments (two. endpoints)._ Given two real numberz: and

with: a , there are .:four kinds of segMents which have e -.and

b as'endpoints: the set of all x for which

(a) a < x < b , also written [a,b] (closed interval)

(b) a < x < b , also written (a,b) (open interval)

.(c) a < x < b sometimes written' [a,b)

(a) a < x < b , sometimes written (a,b]

We emphasize, when the symbols [a,b]' end, (a,b) are laseu for'

intervals'it is assumed that a < b . (The sett defined by (c) arA (d.' .are

sometimes called hplf -open or half-closed intervals, but; the concept is not

particulaz:ly useful, and we shall have, no occasion to refer to It.)

The rays or half-lihes (one endpoint). Given a real number a there
are fOur kinds of rays having a as. an point: the set of all x
for which

x < a x >a , written (-11;,a]

.(b) x < a or x , written (-m,a)

3. -The entire number line, IR, (-00,m).

'A point of an interval which is no an endpoint is called an interior

and [a,m) (closed rays)

and (a.,03) (open rays) .

point of the interval.

The catalog above lists all types of intervals;-it is possible (by use of

the Separation :Axiom, Sect4on A1-5) to show that the catalog is exhaustive but

we are not concerned with that question.. In, the text we distinguish only the

closed and open intervals among the others; these are intervals having two end-'

points and the endpoints are either simultaneously included in th interval 'or

simultaneously excluded from the interval.

5

The length of aiv-Interval (Whether open, 'closed; or other) with two end -

points a -and b is the distance _lb - al between, a .and b .- The
mid,pdini of an interva-1::-.wlth endpoints a and.b is the p

2
-it (a + b) .

Ts

The closed interval with endpoints a and 'b is the set-of 'Values .x

satisfying

?59
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-.similarly, the open interval is the

strong .inequ-ality

t of values satisfying

to -h b)l

en 0 ,the 8-neighborhood of a real number a is the set of all

x satisfying

<Hi lb - al

the corresponaing

7 al < 5

and 5 is called the radiusbf:th4'neighborhood.

a- is the open interval

a - 5 <-% < a+ 5

of length 25 and midpoint at a . If we do not Wish to specify the radius
, . ,

S , we refer only to_a.neighborhood of a . Every open interval containing.

thepoint a contains a neighborhood of a ; conversely; every interval which

contains with each of its points an entire neighborhood of the point, is open.

4'

-Thus the 5- neighborhood of

For many purposes it is-useful -to have ,the concept of a deleted neighbor-

hood of a , that is, a'5-neighborhood with -the'center' a deleted;- namely,

all x satisfying-

0 < Ix - aI < 5 .

Exercises A1-4'

absolute value and inequalities to express .the.following.facts.

The point x Is closer to -2 -than is the point a .

. .

than,it.is to the. origin.

.

The point x, is closer to Point a



'2. -In eachi'case, use absolute values and inequalities to express the fact,

that x. is in- he interval.

(a) E521

.(b). (11-5)_

:(c) [5 .9 6.1]

Find the interval or deleted interval to

belong for. each of the folloWing:

(p.) + 2j <

(b). o

(c) fx

(d)

21 < 1

+a1 <
.2

-

which all Values'of x must
- -

. ( ) *A. set of pOints is said to be bounded If.there exists .a real number
'

A such that 1x1 <A' for all real members x of the set. Which
of the intervals in /lumber 3 are bounded? Which are not? Prove' .

your assertions.

(b) A number M is said to be an upper bound for the-Set if x < M for
all members of

4
the set; a nuMbbr m is said to be a lower bound if

x >m for all members of the set. If a set has an upper bound, is

it necessarily bounded?. What if it has both an-upper and a lower
bound? If a set is-bounded does it have both an upper and a-lower
bound? Prove your asupt.ions.

5. For each of the following' statements give the interval or intervals on
which the statement is true.

(a) X x- 6 >0
J2Y

c(b) (x - a)(x - b)(x -

(c) cos x > sin x

(d) x 1 >
.

jX2 11

c) < for a <-1) < c .

261--



6. In each of the following; for the given value of a find . a neighborhood

of a- where. the given inequality holds.

_ 2

2
'sin x - 11 < 1l

(c)2 a Ix2

(d) = pc
2

x I

x I

1
. -10

1
< 375(5

(e) = -1 ; I x2- x 1 -<
1

1000



A1-5

Completeness of the Real Number System. The Separation

The field postulates and the postulates of order. do not:alone serve to

define' the real number system; the rational numbers satisfy the same postu-

Iates, so.do other fields -(E5:ercisesA172, No. 12) Although no physical

measurement requires anything more than the rational numbers, they arefnot

adequate for, either geometry-or Analysis. For'eXample, the .hypotenUse of a
_ - -.a . .

_ .

right triangle with legs of unit length, has the Irrational length if ; thus

the Pythagorean'Theorem would not exist if lengths were measured by rational

values alone. In the rational field the co cept of infinite decimal would be

limited to terminating and'periodic deci ; aE infinite decimal like

.101100111000 ... with chains of ones and zeros of increasing.length is

uninterpretable-in.the rational f.ield. The- syitem of rational numbers.has
.

.) theoretical gaps, but the real number system is complete- in that real numbers

are a4e-quate to represent all the points on. a line (lengths), and all infinite

decimals At.the same tame, it is possible,to.represent any real number'by a

point on 'a line or an infinite decimal; in fact, we use the concepts .of point

on the -number line or infinite decimal as synonymous with real number.

The completeness of the_real number system, its lack of theoretical gaps,

is a consequence of a geometrically plausible axiom..

The Separation Axiom. If A and B are non-empty sets of real: numbers

for which every number in A is less than or equal td<each number in B ,

then there is a real number s which separates A and. B ; that is, for each

x e A and y= B we have x< s < y .
;

"-In geometrical terms, if no point of a set A lies to the right of any

point of a set B , then there is a point s .auch that all Rdints of A (but,

s , should it happen "to be a point of A ) lie -to the left s , and all

,points of B (but s if's e B ) lie to the right of s C see Figure A1-5a).

A

Figure Al.7.5a.

- c
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A simple example of two sets satisfying the' separation axiom is given by

fy : y > -

Clearly, acy number s. ill, the interval - 1., 1 serves to separate these,
sets.

If two sets .are separated. by. an -entire interval, as in the preceding
example, then it is possible to-find .a rational Separation number s -, because
every interval .on the z ber line7 cbntal,ns rationalpbittt_s: The interesting
cases are those-fOr which there are 'elenienk. s of the two . sets A -and. 33,

closer'-tOgether than any given positiv 'distance: Gaps, in ,:the system.--of.
rational-numbers can 1:;,e exhibited as failures-" of thels eparati.on .axiom for
such sets. For example, let .A be the set of "positive ra.tiona.1:-.nu-ibers

satisfying 1;:x < .2. , and let B be thd set: of p'o,sitive rational numbera . 8..
satiSfying 132 > 2 . It 'is:possible to find rational values' Cr -and-, 13

closer together than any stated-tolerance (see Exercises A3=3., ,No.'-18) but a.
separation number s would have to satisfy s

2-
= .2 . end.. no rational number

has that property (Exercise Al-5, No. 3c). We can define. -112 as the. unique
real number which separates A and '-B In fact; any re;.Inumber:can be
defined as a separation number for suitable classes of rationals. More
generally, it will be convenient for some purposes to determine a. real number
as the unique separation number for two sets by the criterion of the following
lemma.

Lemma .A1-51. .lasider two sets Of real nurrfbe-,-s A and B such that
x < y for each x c A and each y r B . If for every positive e.' there

,exist a = A and 13. c B such that /3 - a < E , th:en the number s separ:-sting A and .B - is unique. Conversely, if there ,just one separation
;I:111.1Abefr then for every positive. e there exist and /3 with
(3 a < E .

Pr-sof. let s and t be separatibn points for A and B . Given"-a c A and.: 13 e B such that - a < e , it:follows 'from the fact that
and t lie between CC and 13 ( Figure A1:519 .that 't I ,e -__Since this

Figure A1-5b

2614-? .".
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is. true for every 'positive e it follows, that

s = t (s ee Exercises Al -3, No. 13b).

- ti = O and hence that

For the proof of the converse, let s denote the one number separating

A and B . For every positive e there angst exist points a z.A and

B -su.ch that

-

a > s and 13 < s ,

:

for should one of these inequalities fail,_ then'we-wouid have or
s as ,a separeition. number., We conclude tliat a < c

.we derive Mme irrpo rtant consequences of the Se ration Axiom.:.

The Nested -Interval Principle,. A set of closed intervals [a -;

n = 1 2 3 ,..1. is called; nested for each-
_ natural number n.. The principle states that .there is at least one POin:t

. common to all the intervals ofecnested. set of closed intervals.

Proof. let A consist of all the lower endpoints_ an of interyals of

the nested set, and let B consist of all the upper endpoints sets

A and B satisfy the conditions of the Separation Axiom, and there exists a

number . separating the two. Thus an < s < bn .

The Least Upper Bound Principle. Let A be a set of numbers which is

% bounded above; i.e., there exists a value M such that a < M for all

a -s A . In the set of all upper bounds of A there is one upper bound which

is smaller than any other,, the least -upper bound.

Proof. Let B denote the set of upper bounds of A . The sets. A and

satisfy the conditions of the Separation -Axiom- It follows that there

exists at least one separation number for A and B . Let s be such a

separation number. Since s. is a separation number it is an upper bounof
A and is by. definition an element of B. Since 's is also a lower bound.

for B it is the least element of B and therefore the least, upper bound

of A.'

The Least Upper Botind and Nested Interval Principles are also Wayi. ,of

.
expressing the. Completenesa 'of 'the real numbers; they are equivalent to the

Separation AXiom in the sense that either may replace the axiom and that the
.

This number. is also called the supremum of

The abbreviation lub A is a_lsb, ,common:
, .

. -

A and is, denoted by sup A .

4



separation propety will then follow.

.-In order-to verify that the Separation Axiom and the Least Upper Bound
.Principle are equivalent formulations of the completihess of the real number

system it: is necessary to prove that.in an ordered field the Least Upper Bound
Principle implies the.SeparatiOn Axton. The,proof-is left as an exercise.

Corollary 1. If M is the least upper bound of the set A then for
each positive e thereexists-an a c A such that .a >M- e-.

:.Corollary 2.- .A set of numbers" which is boundea below has a greatest
lower bund...

The proofs of these Corollaries are left as exercises.

. .

Prove Corollary 1 to the'LeEist Upper ound Principle.

Exercises Al -5

2. Prove Corollary 2 to the Least Uppe'r_Bound Principle.
. .

...., .-

4,: .
3. (a) Cansider the sets A of positive rational numberi ce-' satisfying

,," --- av 2 ,._< 2 ;,and B "of positive rational numbers .13 SgtiSfying
432.-> 2 . Prove if a c-A and (3-c B that a 513 .

_

,.. . -...-

CO Show that a'separation number for 'tile 'sets ,A and B..:muit- --.

4. satisfy s
2

= 2 ; 1:e.,- s = i/Tf ,..,.
( c ) Prove that . -12-. is irrational.

. ..

/.

-.4:- (a) Prove for every real number -a ,. that-there-is an-integer
. ^,' .than'' a (PrinC"iple.'of%Archimedes1/ ,.

--.
, - , T

t
'.(b) "PrOve-that given any--c. > 0 there' :is an'integer,

F
-xi such that

s.

.

n greater

0 < I
-< e .

n-

r



5. (a) We define the infinite decimal
1.

A(b)

O'cic2c3

where co is.an integer and C
'

c2
., c3 ,

the number r , where-

, are digits, by

c1 c
2 cn c, .d; cn + 1

c + <r < c +
- 0 10 0102 lOn 10"

O + +
10n

Show that the preceding inequality doe.0 in fact, define a unique
real number.

Given a real number r we define its decimal representation

recursively in terms Of the integer part function IX] as follows:

c = [r]

='[10n( - c - -
cl c2 cn-i

.1

10
1 J-n-10, 2

10

Show that the inequality irrpart (a) 4.s satisfiedfor this choice
of cn

Show also that decimals consisting entirely of 9's from some point
on are avoided. (Thus, we obtain 2 = 2.000 ... but not

2 = 1.999 ...).

,A4-infinite decimal ca.c1c2c3..-..,,,is said to .fie-peric...-_-fc if for some

-p , the-Period of the decimal, we have, c TOr,a11.
'-4t--h satisfiin4.

0 '------where We require that p is the smallest peisitive"

Integer satisfying. this coition. In words,'from-ome place on, the

decimal consists of t e/indefinite repetition of the same_p digits.

14.

Thus

1 .6.

-33333. -3.

6

are periodic decimals._ It Is convenient to indicate a cycle of .p digits
by underlining, rather "than repetition; etg.ia .--
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e

(a) .Prove that every periodic aeCimFo'reloresents a rational nutber,

(Hint: Coniider the decimal as a geometric progression.)

A(b) ProVe that every rational numbet has'a periodic decimal representa-

tion. (A "terminating" decimal in which each place beyond a.certain

point is zero -is considered as a special case .of periodic decimals )

If r represents ; rational number gi,len in lowest terms, in

the largest possible period of the infinite decimal representation

Of. r in. terms of the ciendminator t .

From b we conclude that a decimal which -is not periodic represents

irrational number, and conversely.

A (c)

7. (a)

an

Prove for every positive prime a othet than 2 and 5. that there

exists an integer, all of whose digits are ones, for which "a is a
_

factor; i.e., a. is a factor of some number of the form

10n 10n-1 + 10
n-2

+ + 10 + 1 .

Consider a polynomial, with integer coefficients:

a xn + a xn-1n n-1 + ... + aix + ao .
-(an. i 0)

Prove .that if 2- is a rational root of this polynomial given in'
q ,

- lowest terms, then 'la 'is afactor-of a
0

and al.,. is a factor o'f

a .
n

(.b) Show that x3 IF x,-i 1 has no rational root.
---,

(c) Prove that if 1.11T is rational then it is integral.

(3) Prove that I ,47 is irrational.

8. Prove ,that an orderecr:field in whic the Nested. Interval Principle holds

also obeys the&TpanIti<mAJiaom. s

9. .Prove that an ordered field in which the Least Upper Bound Principle h-

obeys the Separation Axiom.

)
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A2 -1. Functions.

Appendix

- FUNCTIONS AND THEIR REPRESENTATIONS

.A2-1

The concept of a function is basic:in the study of, calculus; it is

imperative that you have a clear understanding of the concept as well as

related mattersAch-as functional-notation, operations on functions

(composition, inversion), and special classes of functions such as monotone

functional.poiynodial functions, the absolute value function, the circular:
I.

(trigonometric) functions,_ etc..

The precise definition of function can be . formulated in many ways: -..- ,

as a set of ordveil pairs (usilily, ordered pairs of numbers), as an associa-

tion or correspondence between two sets, etc. But.no matter what definition
. _

we choose, for a. function three things aie required: a set called its domain,

a set called its range, and a- way of'selecting a mA:Wer of-the range for each:

member of iedociain.

Example A24Ma. The multiplication of, integers by 2_ defines a function,'

:The-domain of this function is the set of.all integers; therange of the

funrttipah is the -set of all even integers.

RP

_We choose to' define a - function as' an association between elements -of two

'sets; thus,the functionample A2-la associates- with each integer- its
.

A2-1. If with each element. of a set -A thee is

associated exactly-one element of a. set B , then th1s-associa-
-

-tibn_is called'a function tram A to B. The set A is called.

the domain .of' the function, and the set C of all members of B

assigned to members of A by the function. is called-the range

Of the function.

9

..,

In what follows we slif4_1/ be e*clusively concerned with functions whoie

domaims are subsets of real- numbers and whose ranges -are also subsets-of .real

-nmmbers. More complicated functiOris !'vector valued functions") may be

built fram.%these.-

2691 2--1 t:;



A2-1

The-range- C may be the-whole set B' in which case the function is

called an. onto function, or it may be a proper nf . In any case,

we generally take .for B the whOA set of res.7. se a function is-

usually specified before its,range is considere

It is common practice to represent a function by the letter f (other

letters-such as 0 , etc, will also be used): If x is an' -

el ent of the domain of a fUnction, f then t(x) denotes the element of

the range which f associates with x . -(Read for f(x) "the value of the

f at x ," or simply, "f at x ," or "f of tx .") An arrow is

st the association'of
's
f(x) with x :

function

used to

f : x--0,-f(x)

(read' "f takes x into f(x)").', This notation tells us nothing about the

function f or the element x ; it is merely a symbolic description of the

-relation between x and f(x)

4c,

Example .A2-1b. Consider_a function f defined as follows: f takes

ach number-.of the domain into its squate. Thus, if 8_,is an element of the

domain, then' ;f takes 3' iftti, 9 , or f associates -9 with 3 . Concisely,

f(3) = 9 . In gene.a3;, if x _represents any number in the domain off.,'

then f. takes x---Iiitto x2 :

Thelgtnction i not ade o p

domain'is the se

the range Is a subset o ,,segative integers, (0, 1 ,.4 ,

. we choose the set of all re numbers as domain, then a different function is
-

defined, even though the rudef the same; in'this case the

z4nge Of the fuiltctidhis the set of ndnnegative real numbers.:

2 2 ,

de-Zinea--antil we specify its domain. If the

s_ (mom. 1 , 0 1 j 2 , then

J c
1.-f

'.''-. . .
, ..d s -

.
,

- Observe tha0--.44 function from A to B is a one-way association; the
...

, -: A .

reverse association from B to A is not necessarily a function. In,
,

../

:-, , , . ..-

/ Example A2-' , rk3) =,9,';and fC-3) = 9 , while the reverse association
. _ , .. 'ND- . 1... . .

would
-
assign both 3- an .. 3 to,9 , - violating the definition 'of -a f)anction.

)
.".

It is often useful-to think of ss: funotio:nas a mapping, and we say that a

TUndtion maps each element "of its domain upon one and. only one element of its

this f : x:LL:sh.f(*) can_ be read,' "f' maps 2c.' upon: f(x)

f(x) --a.c.i.called the in Age of x.. '-under. p x"-is called. a
- ,

r",.

E

t

.11
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Preimage of f(x) . This notion is illustrated in Figure A2 -la, where

elements of the domain A and range B are represented by points and the

mapping is suggested by arrows from the points or the domain to corresponding

points of the-range.*

Figure A2-la

Note that each element of the domain is mapped into a unique element of the

range; i.e.; each arrow starts from a different paint in the domain. This is

the requirement of Definition A2-1, that with each element of the domain there

is associated exactly one element of the range.

Our Definition A2-1 of function contains the rather vague phrase, "there

is associated." The manner of association must be specified whenever We are

dealing ilgth a particular function. In this course, a function will generally

be defined by a formula giving its value: for example, f(x) = 3x 5 ;-

g(x) = x2 + 3x + 7 . Other-ways of defining -a function, Include verbal des-
_

cription graph, and'table.= (Recall Exercfses
W

The-notation f(x) is particularly convenient when refer'to.values

of a function; i.e., elements in the range of the function. We illustrate

r

this in the next'example.

Example A2-lc. Consider the-function

f : 5

set of all ,real numbers. Then- whose domain is the

ft.144s.7..-/z(x) =:3x2-

f(a)- = 3(-2)2 7.

f.(40) F 3(032 5 =
.7,

and if a+ ;IT areal number,-then f(a + = 3(a + ,47)2

. 271
C
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We note,"-since -x2 ,

3x23x 5 > and hence

less ,than -5. .

)- -

may-be any nonnegative real number, that
the range of f set of all real numbers not

,,AS

mentioned earlier, a,function is not completely defined unless he
domain is specified. If no other infortation ia_given it is a convenient---
practice, especially when dealing with' s. function def3,ned....by'a formula, to
as e that the dathain includes all real nuMbers.for which the formula
de scribes a real number. For example, if a domain is not specified for the

. .

function f : x--7-i.-
2x

.

, thenthe domain
7 X .. 9

_ real numbers except 3 and -3 . Similarly, if g is a function such that

Is assumed' to be the set of all

g(x) = - x2 , e assume,

domain is' (x : -2 < 2)

, -2 to 2 inclusive.

We note here that

in the absence of any other information; that.the

; that as, the sett of all real numbers x from
4,1

two functions f and g are identical if and only if
they have the, same domain and f(x) = g(x) for each x in their domain.

The graph of a'function is perhaps its most intuitively illuminating

representation; it conveys important informapion about the function at a
glance. The graph of -f is the set of aI1 those points (x y) for which x
is in the domain of f and y = f(x) .

Example A2-1d.

the- semicircle shown

of what the function

TheIgraPhaf the function: f 4;77 is

in FigureA2-1b.* The graph gives us a clearpicture

IS doing to the elements of its domain, and we cat,

moreover, usually infer from the graph any limitation8'on the-domain and range.
Thus, it is easily. determined from Figure A2-lb that the domain of, f is the
set of all x- such that -5 < x < 5 and the range is the set of all y such
that 0 <y < 5.. Th&e sets are 'represented-by. the heavy segments on the

' .

x- and y-axis,-respectively .

Ca.

* In this figillrea complete graph is displayed. The graph in Figure A2 -lc,
as well as most of the graphs in the text, are necessarily incomplete.

ti
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Figure A2-lb

We remind you of the fact that not every cur-vie is the graph of a function.

In particular, Definition A2-1 requires that a runctioh map each element of

its domain onto only one element of its range. In terms of points of a graph,

this means that the graph of a function does the points (klyi)

sad (xly2) if yi y2 ; i.e., two points ng the same abscissa but .

-different ordinates. This is the basis for,the "vertical line. test": if in

thexy-plane we imagine all possible lines which-ar!:narallel to the y-axis,'

and ir any 'tof these lines cuts the graph in more th one point, then the

graph represents a relation whi6h is hot a function. Conversely, if every .

line parallel to the y -axis intersects a graph in at most one point, then the

graph is that of a function.

,Example A2 -le. The equation x2 + y2 25 ,'whose graph is a circle with

radius 5 and centerat the origin, does not define a function. On the open

interval x < 5 , every value of x associated With two different

values of y , contrary to the definition of function. Specifically, (3,4)

and 43,-4) are two polhts of the'circle; they determine a lineparalftl to
the ktp.xis and- intersecting the circle in two points, thus'illustrating-"that

the circle is. the graph of a relation that is not a function. We can, however

separate the circle into two semi-circles--the graphs of the frictions

2:..--/57:72c2" (Example A2-1d) and x
,dt

Throughout this discussion we have used theeetters x and y to
represept elements of sets. SpecificFoly, f -4.4p the function

f. x i y= f(x) ,
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then x reRresents an element (unspecified) in the domain of and

represents the corresponding element in the range of f .. In many textbooks

x and y aise.called variables, and since' a. pa:rticillai- value_, of y in the

"range depends upon a particillper choice of zic- in,.the domain, x is called

the independent variable and y the dependent variable. The functional
.

relationship is then described by saying' that '"y is a fuildtion of x ."

For the most part this laaEraage is not used in this textbook.

We conclude this section with a summary of severakdifferent special
functions; you are undoubtedly acquainted with some of them.

The Constant Function. If b is an arbitrary real number, then the
function f which associates with every real number, x the va_Allt b ,
f is called.a constant function. More generelly,'any function

whose range contains exactly,one number is a constant function. The graph of
a constant function, say f : for all real x , is a line parallel\
to and JcJ

4

units"from the x-axis.

The Identity Function' Let A be thgoset of all real numbers; with

each number a in A , associate the number a-. This association defines a
function whose domain is A and whose range is A , namely

f : .

More generally, for any domain %uch a fianction is.,called the identity function.

If the domain is the set of all real numbers, thenthe graph of f is the

line withIsquation y = x .

The Absolute Value Function. With each real number the absolute value
*function associates its absolute value (Section A1-3):

f lx1

*
Alternative definitions:

for x > 0 ,

-x for x < 0 .

f : x ix( = max {x, -x)

1f x Ix t = x .

27
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The graph of r is shown in Figure A2-1c; it is the union of two rays

issuing from the origin.

A2-1

Figure A2 -lc

The Integer Part Function Every reel number x can be represented as

the sum-of an integer n and areal number r such that

x=n+r,n<x,-and 0 .er <1.

For example,

. 5.38 5 + .38

3 = 3 + 0 ,

-2.4 . -3 + .6

,

.

We call n the integer part of x and denote it by Exj = n ; it follows

that [x] < x <NA 1 . ThUs lie see that to each real number x there

corresponds a unique integer part [x] and this correspondence defines the

integer part function

X t.r EX)
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A graph of this function is shown ill Figure A2-1d; it is called a step graph;
i.e., the graph of a step function.

-2

Figure A2-1d

f : x -9 Exj

The Sign= :Function. With each positive real number associate the number
+1 with zero associate the number, 0 , and with each negative real number
associate' the number -1 . These associations define the signum function,
symbolized by agn x 'Thus

_ .

1

1 , x > 0

sgn x = O, x = 0 ,

-1 1 x <0 .

We leave it as. an exercise for you to sketch the graph of this function.

Even and Odd Functions. Let f Ape a function whose. domain contains -x
whenever it Contains x The function- f is said to be even if
f( -x) = f(x) . For example, the function f with values f(x) = x2 is

- 2even since ( -x)2 = x. for all x . ,Geametrically,the graph of an even

function is symmetric with respect to the y- axis..

The function f is said to be odd if f(-x) = -f(x) . For'example, the
function f with vaLueq,f(x) = x3 is odd since 3(-xj = -x3 for all xN

Geometrics13y the graph fran.odd function is symmetric with respect to the

cNri-glaa.
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Periodic Functions. Certain.fUnctions have the.property that tbeiri?,
.

functionTvalues repeat themselves "in tlie same order, at regular- intervals , over

the domain (Figure:A21e) .

Figure A2-le

'Functions having this property are called periodic; included in this Important

class are the circular (trigonometric) functions, to be discussed in Section

A2 -5A2-5.

'A function . f is periodic and has period p , p / 0 , if and only if,

for all' x in the domain of r x p is also in the domain and

(1) f(x +.P) = f(x) .

.From the definition we note that, each successive addition-or ubtraction

of p biings us back to f(x) again. For example-,!..,

f(x t 2p) .= f x + p) +

= f(x + p)

and

= f(x) ,

- p) = f x - p) + 11.

In geners.11 we Infer that any multiple of a period. of is also a period;-

that

For a constant function

f(x np) =_f(X). for any integer n

-±* x

it is obvious that 4f 3,s periodid-wikla arrtaeriod p , since

f(x = c = -f(x).
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s
. .

, _ .
.

It can be sholin that fOr nonconstant periodic funCtions (Continuous at
. y * vl -,

one point at leagt). there is a'-least positive value of p for which (1).is,
true. This is called the fundamental period, or aiMply the period, of such d

a function. ... -,
. -,..

--,,,

_ .
. rExample A2-12% f : X--L--41.-Dc ik] 0,-,X real, is a periodic function.

IIIf .x =-n + r where n -is the integer :part -of x and r its fractional
part, then

8

and

f(x) = f(n- r)

,-- (n r)

=n+r-n
= r

f(x + 1 ) = f(n 1 -I-

= (n 1,± r) -

= n -1- 1 r -

= r.

En xi

+ 2,)

o.

Thus, as was asserted, f is periodic"and its period is 1 , as shown'in its
graph (Figure A2-1f).

Fig-ua-e'A2-1f

This is left as Exercise 14(b) of 3-5 after the discussion of continuity.

2We note that since- f(x) = r , the fractional part of -x , this funCtion
is sometimes called the fractional part function.

a



Exercises A2 -1

4 1. Below are given examples ofIssociatiOnbetween elements .Of:two sett.

Decide whether each example roperly represent a fUnction. This also
. .

requires you to specify. the dom n and range for each function Note that --

no particular,v.ariable' has to e the domain variable; and also that some

of. the relati6ns may give rise to several functions.

Assigato'each ionnegative integer a the number 2n -

Assign to each real- number x. the. number 7.

Assign to, the number 10 the real number

Assign-to each pair of distinctpoints in,the plane-the distance,.

between-them.-

-(for
,

(for all .3r and z

y = 2

= 2x2 + 3

(i)- - 4 = .

0) y < 2x - 1 .

(k) f(x) = .

(.0 'x2 + y2 16

2. Sketch the graphs of equations (e) - (I) of Number 1.

3. A function f is completely defined by the table:

(a)

x 0 l 2 3' 4

f(x) 5 . 9 13-

Describe the domain and range of.

a

4

(b) Write an equation with Suitably restricted domain that defines

. If- f-:- x2 +- 3k - 4 'find .

(a) f(9) ! . (d)

(b) .

' -f(2 - 1)

:(c). f(-1) f{f(1) . . ehis is the value

Of f atf(1)
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If is a function defined by g(x) 7 , find; if p ibie,

(a) i32) .

-(e) g( -3) .

(f) gU75)

(a) -g(0)

(b) g(1)

(cc) g(-1)-

6. WhiChof the following mappingsSepresent functions?

(a)

(19

. (c)

(e)

2
7. xGiven the functions f : and g : . If x is a real

number, are f and, g' the same function? Why or 17/Cy not?
2 - 48. Given the functions f.: +_2 and g : x Ifx - 2

real, are f and g the same function?. Why or why not?

What number or numbers have the image- 10 under the following mappings?
. .

_

10. Which of the following Statements are always true for any function

assuming that xl and -x
2.

are 1:11 the 'domain of f ?
..-

- (a) If xi = x2 , then f(x..1)-. f(x2) .

(b) If x
1 ( x2

, then f(x
1

) f(x2)
. ,

.

#c) If f(xl)'.= f(x2) , then xi_. x2 .

(d) If. f(x.f)i f(x2) .-then--xi. 5-X2 , .

28g0; ..

S 6

(a) f :` 2x (d) ce : x Ix- 4-1

(b) g : x2 (e) 95-:

(c)

's

41;



11. If f(x) which of the following statements

numbers x and t ?

(a) 'f is odd function.

(0) f(x) f(x)2 .

(c) f(x - t) < f(30 - f(t)

(d)-f(x t) <f(x)+ f(t) .

12. Which of the f011owing functions are even, which are

neither even nor odd?

(a) f

. (b) f

(c) f

true. for

A2-1

alM%real

odd, and which are

: x
. . (e) :

3
+ 43x

2 + 5 (.f) x x3 - 2x: x----- -2x

4-x + 4
(g) k

21/x

(d) 'f

13: of t

(a)

owing graphs-could represent functioni
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(--e) (f) .y

ti

14. Suppose that f : x

,Sketch the graphs of

g : x (x) .

(b) g f(-x)

(c) g. x--- If ( x)1. .

(a) g ; x

f(x)

15. A function is ,d ined by

, -

i's-the function whose gre,ph'is- shown.

Y

. for
f(x) =

0- -for x = 0

Identify-thts function saad sketch its graph.
-

16 -Sketch the _graph of each fiznction, specifying its ddraaiii and ..ange.

(a) f x 1)7 (g) f : sgn x

.L .

( c) f ': x 11 x[ (I) f : x '-'
X

.. ( a ) ' f :. x,;1 - (j ) . f_ x x [x]

-..

-..(e) f . x xlx1 -_

(f)
.,..

... . x .... 1x1 + 1x .7. 11

(k)-

(!)

f

_f

:

:

x -11 --

x ----...1x2

2
x et

- 2x - 31

(Hint: Consider separately , 4
-....4.4.

the- three possibilitie:
x < 0- , 0 < x <'1 and
X > 1

282
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0.:
,

Sketch the graphs of the functions in Exercises 17 to 19. Fo5-those functions
.

which are p_erriodic,-Indic.ate their periods.' indicate those functions which are

even or odd;

17. (a) f x - [x

2

-

2x2

07) 2x. - .

18. (a) f :'x gog a > 0

(b) f 5x - [2)0 - [3x]

(c) f : x(,/ + 1) - Ec,/-21 Dd.

s
19. (a) f 1

2
gn x

: x - This function is also\called the_Heaviside-

unit function and is designated by f : .

(b) f : x--.H(x) H(x - 2)

(c) f : x --41-H(x) . H(x - 2)

(d) r : _ 2)2 . H(x)

(e) f : x H(x) + 1-1(5c - 2) + H(x - 4)

(f) f x --H(x2 - 2)

(g) f : x ( sgn x)(x - )2 + [sgn(x - 1)]x2

20. If f and g are periodic functions of periods m and n respectively'

(m , n integers), show that f + g and f g are also periodic. 'Give

examples to show that the period" of f + g can either bye greater or 'less

than both of m and n.. Repeat the same for the product f

21. (a) Can a function be both even and odd.?

-
g.

(b) What can you say about the evenness or oddness of the product of:

an even function by an eve7 function?

an even i'unCtion by an odd function?

an odd. function by an odd :`_'unction?

(c) Show that every functiontwOse domain contains -x IThenever it

contains x can be expressed as the sum. off' an even function plus

an odd function.

33,- 2, J
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22. Find functions f(x) satisfying

f(x) f(-x

Swggestion: Use 21(c).

(called a functional equation).

'23. Prmye that no periodic function other than a constant can be avrational

function. (Note: .A rational function is the ratio of two polynomial

--functions.)

lQ

AP.

NV

2
284 6

ab.



,

A2-2. Compositenctions.

Given two functions f and g with domains whose intersection

empty, we can construct new functions by using any of the.elementary

A2-2

is non7

ratIonAl

operations--addition, subtraction, multiplication, division-on the gi'ven

functions. Thus, the sum of f and g is defined to b0'.i.:the functiori

f + g : + g(x)

which has for domain. those elements contained in the intersection-of the'

domains of f and g

product, and quotient

of functions, just as

. Similarly there are definitions for thedifference
._, .--- Y

`of two functions; .there is, in fact a leiOle 'algebra0
4

there is the familiar algebra of real- numbers

In this algebra of functions there is one

part in the algebra of numbers:

is best explained by examples.

Let

and

We observe thst

operation that has- -no counter-
,-

the operation of compdsition. This operation

g 2x 14- 1

f :
+x2

g(1) = 3 and,, f(3) = 9 ,

g(2) = 5 and f(5) = 25 ,

and, in general, the yalUe of

f (ex))

f at g(x) is-

= f(2x + 1),= -(2x + 1)2 .

'7ze7

We have constructed a new function which Maps x on the square of

(2x + 1) . This. function,- defined by the.mappdng and denoted

by fg , is called a compoaite of f

represent the value ofe.function

Either symbol means the value of f

f

and g . Hereafter we.shall-usually

fg by fg(x) -rather than f (g(x))

at g(x)

I

The symbol fg denoting the composite of the functions f and g
must not be confused with the_ product of the functions. Ifr.this text we
distinguish the latter by use of the-dot for Multiplication; i.e., f -g .

f
285
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1

1

An immediate question arises as to the order in which two functions are

Composed: is the composition-of functions a commutative operation; i.e.,-in
1

, ,.

general, are gf(x) and fg(x) equal? In, the example abOve welhave'seen,_
1

that fg,(2) = f(5).=
I

! sf(2) = g(4) ,--, § / fg(2) .

This Counterexample is .sufficient to prove that in general gf(x;) L fg(x) .

,

The operatio f composition applied to two functions f and gi generally

produces'wo differ 6t composite functions fg and gf , depending upon the

order in- whicFi theyare'Composed.
!

. N

A word of Caution
L)

dej'±ned only if _x is

-For example, i'

25 ,. and we CaicUlate -gf-(2) :

t en

-

must be injected at this point. The number -fg(x) is

in the-domain of g and g(x) is in the domain of f .

f(x) = -bgc" "and, g(X) = 3x- 9 ,

' fg(x) = f(3x - 9) = /57747
. 6 4

% ' 1

arr the domain of fg is the set of real numbers x for which: - 9 is Y-

nonnegative; henCeZthe domain is-the set of all x .>. 3 .

, .

For the other composition of the same functions f and g,0-we have
e f o

'gf(x) IF g( Y) - 3167 - 9

defined for all nonnegative real numbers x .
- / -

-

composition of function's formally.d efine

DEFINITION A2-2. Thescomposite fg of two functions

g is the function

fg = 1'4(4 .

The domain of fg is the set of R11 elements x in the domain

_Of g for which g(x) is in the domain of f . The operation,

of forming a composite of two functions is called compos ition.

The definition may be extended to the composition'ofthree or more

functions. Thus, if f , g , and h are functions, one composite is

fgh : x fgh(x) -= f(Fg(h(4)

In order to evaluate fgh(x) we first find h(x) , then the value of g at

(x) , and finally the value of f at -gh(x) .

286
. . _4 j



A2-2

Exercises A2-2

1. Given that : - 2

(a) f(2) + g(2) . (e) f(x) + g(x) .

(b) f(2) g(2) . (f) f(x) - g(x.) -

(c). fg(2) . '(g) fg(x) .

(d) gf(2) . (h) gf(x) .

2. If f(x) = 3x +-2 and g,(x) = 5 , find

(a) fg(x)

(1-,\ gf(x) .

3. If f(x) = 2x + l' and ex) =-x2 firid

.(a) fg(x) and gf(x)

(b) For what' values of x , if any, are fg(x) and gf(x)r ea al. ?'

4. For each pair of functions f and g ; find. the composite fun ins
and gf and specify the domain (and range, if possible) of ea

d g : x----10-x
2 + 1 for all real X ,, find.

r

1
(a). f ; x , g : x --..- 2x - 6

-.)-c-t 1 , .
,

(b) f : ,x--8- ,
g : x., x2 - 4

(c) f 4 X- 1
.7 g : x

,..._,
x

-. f : x x2 g : x ----8.-,

(e) : x x2 .e g:x-- /4 - x

(f) f :46% x
2

1 , g : x -1/

.".

5. Given that f(x) = x2 +7

/g. Solve pTOblem 5 taking
,,

7. Describe functions f and: g such that gf will equal.

and g(x) = , solve the equation

fg(x) = gf(x) .

g(x) = .

(a) 3(x + 2) - 4 .

(b) (2x: 5)

(c)
3

2x -; 5

rf

. (d) 42 -

(x4)2
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8. For each pair of functions f and g find the _composite functions fg
and gf and specify the domain (and range, if possible) of each. Also,

sketch the graph of each, and give the period (fundamental) of those
which are periodic.

(a) f

(b) f : x
I I

g : X----mwsgn(x - 2)

, x ----- 2 sgn( x - 2) - 1

9. What can you say about. the evenness or oddness ;of the composite of

(a) an

OD?) an

even function of an even function?

even function.of an odd function?

(c) an odd function of an odd function?

(d) an odd ;unction of-an even-function?

10. If the function. f. is periodic, what can you say about the periodic -

character of the composite functions fg and gf assuming these exist

and g is an arbitrary.functibn_.(not periodic)? Illustrate by examples.

11. If the functions f and. g are each periodic, then the ,composite func=

tions fg. and gf (assumed to exist) are also periodic. 'Can the period

of either one-be less than that of both f and g ?

Al2. A squence a0 , al , a2 , '".' an , , is defined by the equation
,

+1 f(an ) , n = p:, 1 , 2 3 ,

where 'f is a given function and aa is a given number.- If' as 0

.1iAd f : Ythen

al 7 fa0)

f(ai) = ff(e.0)..

f(a2). ff(al) fff(a0) 12 + .

z

Show that for any'

(a) an < 2

( b ) n> 0

288
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. `\
.. .. ' .

K.13. 'If an+1.= f(an) , n = 0' , 1 , 2 ; . .. , a0 = ii ,_find an as a function
of II and n , for the following functions f :

O

(a) f : x 7.. a 4: bx .
_..... xm .(b) f x: . -

ki

(c) f : x....,77c . -

(d) f : x --... 1
.,.. - x ..
..,

i
.s.

-1 - -
( e ) f : x-1.- (1 - x) .

A2-2-

I

a

as

'

r.

289
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A2-3. Inverse Functions.

Recall the vertical line test for the graph of a function (-Section A2-1) :

if every line which is parallel to the y-axis. intersects a graph in at most

one point, then the graph is that of a function. Thus in Figure A2-3a, (1)

and (ii) illustrate graphs of functions, (iii) is the graph of a relation that

is not a function.

. (ii)
Figure A2 -3a

This figure also illustrates an important_distinctioribetween two classes of

functions: for graph (i) there is at least one line parallel to the x-axis-

which intersects the.graph in more than one point; 9is is not the case for

graph (ii). The latter' is typical of.a class of functions called one-to-one

functions: each element in the domain, is mapped into one and only one image

in the-range, antLeach element in the range corresponds to one and only one

preinAge in the domain: In other words, a function ofthis kind establishes
1

a-one-to-one correspondence between the domain and the range of the fungtIon.

DEFINITION A2-3a. A function f is one-to-one if whenever

f(x1) = f(x2) then X1 = X2

Note the distinction between Definiiions A2-1 and A2-3a. The former

states that any function f has the property that if xi = x2 , .then

f(x1) = f(x2) , whereas the lat'teStates that a oneto-one function f is

such that f(x1) = f(x2) If and

The class of one-to-one

of this class we can specify a

fur

undoes the work of the

only if xi = x2 . '

-.
--Is is important -Secatthe f'or each member

that, in a loose way of speaking,

Thus, for example, if f 'Is the
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function which maps each real number onto its double, then there is a function

g- , called the inverse of f , which reverses this mapping and takes each real

number onto its half: f : x 2x .;
1

g y .

tsit'

DEFINITION A2-3b. If a functioni f : f(x) is one-to-one,

then the function g x whose tomain s the range of

f , is cPlled the inverse of f .

The functions f and g represent the same. association but considered

from opposite directions; the domain of g is the range of .f and the range

of g is the domain of f . Furthermore, ,g is itself one-to-one and its

inverse f .

It is instructive to look at the compo sites of two functions f and g

inverse to one another. If f' maps x 'into y , then g. maps y back

into x ; in other words, if y = f(x) , then x = g(y) Hence,

gf(x) = g(y) = x , for all x in the domain of f ,

and I

fg(y) = f(x) = y , for all y in the range of f .

Observe that the restriction of the domain of g to coincide with'ithe range

of f is part of the definition of theinverse: -

Example A2-3a., Consider the one-to-one function f : x 2x - 3

what is its inverse? Here f is described by the. instruction, "Take a_number,

double it, and then subtract 3 ." In order to-reverse this procedure, we

.must add 3 and then divide by 2 . This suggests that the inverse of 0f --,-------
....v.

x-__!.....1-
, ..;

Is the-flu:action. g : x---11*- To prove this-fact, we must show that g2
.

. ..
.-:"

satisfies Definition A2-3b; 1.e.4 show that g maps .f(x) into x for' all
2 .

x in the domain of f . By substitutiow

(2x - ) 3 4
gf(x) = g(2x 3)

3 +
- x ;

. 2

g is the inverse of A' f F"Lthermore, in the opposite direction,

fg(x) = f(NE-1) = 2(N-1) - 3 = x

for x in the domain of g . Hence, f is 'the` inverse of the function

g , as-expected.

1>

p

(
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The graph of the inverse g of a function f is easily follnd from the

graph of f .
r f maps a into b , then g maps b into a . It

follows that -the point' (a,b) is on the graph,of f , if and only!if (b,a)

is on the graph of g . Figure A2-3b shows three pointsj1,-3) , (2,1) , and

(4,2) on the graph of a functiOn f , and their corresponding po±ts, obtained

by interchange of coordinates, on the graph of g ;

Figure A2-3b

= f(x)

1-

From this figure we see that the pints (a,b). and (b,a) are symmetric

with respect to the line y = x ; 1zat Is, the line segment determined by these

two points is perpendicul=r to, and bisected by, the line y = x'. We call ;

(b,a) the reflection of . (a,b)_ in the line. y = x .

EXample A2-3b. Consider the functions f : , x > and

g : x 2
- 2 . The function f is one-to-one ; g is not and, hence,

cannot be the inverse of f as it stands. By Definition A2-3b, the domain

of g must be the range of f , namely, the set of nonnegative real numbers.

Hence, the inverse of f is g : x2 - 2 , x > 0 (Figure A2-3c). The
-

composite functions verify that f and g are inverse to one another:



A2-3

fg: = Ax2 - 2) + 2 = x , x > 0 ;

gf, gf(x) = ( X77)2 - 2 x , x > -2 .

7figure A2-3c

The relationship between the coordinates...of a point /a,b) .and the.
,,

coordinates of its I-- _'_action (b,a) in the line y = x suggests a formal

method for obtaining an e;-lation of the inverse of a given function assuming

that the inverse existL,

maple A2-3c. Consider 'a:le function

If we interchange

(1)

x y = 3x + 5

x y in the equation
7

= 3x + 5 ,

for all real x .

,Jwe Obtain

(2)
.

x = 3y + 5 .

For every pair of numbers (a,b) in the solution set of (1), a pair (b,a)

is in the solution set of (2). -Hence, (2) is an equation defining implicitly

the inverse of the given function f . In order to obtain the explicit form,

we solve (2) for y in. terms of x and obtain

293 2 9
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Y =
3

The inverse of f is, therefore,

g : =
3

VI/

for all real

ti

You should' verify the fact that gf(a) = a for anyr a in the domain of f ,

and that fg(b) = b for any b in the domain of g -(range of. f).

Example _-If the given equation defines a quadratici runction, the

Problem of finding an inverse is more complicated. In -the first place,.the

given function must be restricted to a domain whiA gives a one 7to-one

function; in the second place, the.technical details of interchanging the.

variables x and y in the given equation and then solving for y are more
introlved.

'Consider -the function

0'

f X X
2

+ 2x 3

whose graph is a parabola with vertex at (-1,2) and opening upward. If,

for example,

f1
f
1.

(y' ;

we restrict f to the domain. Lx : x > -13 then we have a

which is one-to-one and hence has an inverse gi . The range of

y = fl (x) > 2) , and this will be the domain of gi'

. ,

We proceed to find a formula defining g
1

. 'We are given

and we interchange the

y = x
2

+ 2x + 3 ,

variables to obtain

x = y
2
+ 2y + 3 .

We now solve for y in the quadratic equation

y2 + 2y + (3 - x) = 0

Obtaining

y = -1 4- i7777 or y = -1 - t,47.77 .
...

f

Which of these formulas defines the fAction g
1

', Since y here represents
1 t .

July element in the range of the inverse function, and 'since the range must be

the same set of numbers as the domain of f1 , we see that y > -1 is

required. Hence

.

)
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defines the inverse function

y =

x + .47=2-

whose domain-is fx x . (Note, again, that this isthe range of fl .)

It is helpful to-sketch the graphs of-the two inverse unctions in orAl.

to see mo're clearly the relEitionships between their domains and ranges. (See

Figure A2-6.d.) an fact,. if you graph theabrigirml function f you may see

more clearly how its domaiii may be:17estricted in infinitely many ways to give

as many different one-to-one functions; each of which has a unique inverse

function.

r,

= f x)
l

/

y X

z

Figure A2-3d

Ir
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Ekercises A2-3 ,

..1. 11.72Ett is tie reflectionlor the line y = f(X) = 3x in the line"Iy = x?
......,

..-

.10!krIte an equation defining the Inverse of r .
A

2- Nhich points are their own reflections ~in th

graPh Of all such paints? -

line y = x ? What is the

- A3. (a) Find the slope of the segment from 1,861s) to ( b,a) , and prove that

the segment-c4e-perpendicular to the line y =

(b) prove that the segment from (a,b) to (b,a) is biseted by the
laze . Y x .

2k. Whet is the reflect*pn-of

(a)
= 0 ?

(b) y = 0 ?

(c) y

Describe

1213rerses.

An equatibn (5.,,an expression (phrase) is said to be symmetric in x and

any function or

in the line

(d) y = 2 ?

(e) x = -3 ?

.

functions you can .think of which are their own

if the equations or the expressions rem4in unaltered by interchanging
-

and Y 3 e7g-, x
2 -

' 0 , Z;? + Y3 3XY Ix- YI = lx + YI y.. _

x 4- y_-. It follows that graphs of symmetricrequrtions are symmetric
about the Y. = x line. 'Geometrically, we can consider the line . y = x
behaving as ..mirror, i.e., for any portion
be a poi -lion which is the mirror image.

4 11-The equatiegn x +-y = a
is obviously s etric with respect
to the line Y = x What other .

axes of symmetry (mirror type)

does It have?

7.--The expression

a + b + la - bJ + 2c +

is Qhviously sYmmeriC in
a and c

of the graph there mist also
y

a**, b + 1a - ID - 2cI

S

a

X

a and b . Show that It is also symmetric in



8. Find th e inverse of eaecla

(a) f : x 3x + 6

(b) f : x x3 - 5

A2-3
"."

/ )
31x---0- - 3

.

.

9. Which o4. the following functions have inverses?' Describe each inverse by....
-

means of a graph or equatioi and give its domain and range. -,

(a) f : x x2
..,,.'

(d) f : x ........... 153 -
.

,
. 2

(b) f : ,x----..-17,c (e)': f : x.---41.1.xlx[-

---_,..' .

(c) f : x----0-1x1 (f) f- : st --10- Sgn x
) ,..

,10 As we have seen, f x2 for all real. St- doeS tot have an inverse.

Do the folloWing:
. . '-.- 0,

(a) Sketch graphs yd' ---+-fi :,xx2 xfor, > O eend,

4

f2-: x----0.-x
2 for

x < 0 , and determine the inverses of.'fi and f2
.,

(b) What.relatfonahip exists among the &omains of ..,:r,-ri and f2 ?
. .

(f
1

is calledltbte restriction of f to the domain (x,:-.x > 0) s

and f is similarly the restricts -nn r to the domain
2

(X : x < 0)40

11. (a) Sketch/a. graph of f : x 477 and sholi that f does not have

an inverse.

(b) Divide the domain of f into two-parts such that the restriction'of'

f to either part has an. inverse.

-(c) Write an equation defining each inverse of part (b) and SketcM:the

graphs.

12. Do Problem 11 for f x x2 - 4x .

13. Given that f(x) = 3x - 2 and g(x) . -2x + k , find hr._ such that
.,

fg(x) = gf(x) . For this value of k , are f and g inverse to one

another? Give reasons for your answers.

14. Show that f :
2

- 4x 5 for x > 2 and g

.for x >1 are inverse to one another by showing. that fg(y) for all

y in the domain of g , and that gf(x) = x for all x in the domain

of .f . .

15. If f(x) = (2x3 + 3)7 , find a-e least two functions -g such that

fg(x) = gf(x) . -

297
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A2-4. Monotone Functions.

If we examine. the behavior, for 'x increasing, of the functions
f : 1/7c and g : x a- in x ,-we note that the values of f increase
as x increases, while the values of g are sometimes increasing and some
times decreasing. Geometrically this-means that the graph of f is con-_

tinpsally rising as we survey it from lef- to right (the direction of increasing
x),:whereas the graph of g , like a wave,,is now rising; now falling. The,
graph of a functioh may also

-.contain horizontal portioh's (Parallel-to the
x-axis), where the values of the function remain constant on an interval. A
funCtion such as x Ex] -illustrates this, and also points up the fact
that the graph of such a function need not be continuous.

example A2-4a. The function h , defined by

-x2

h(x) -1

x3

has the graph shown in Figure A2 -4a.

-1 -

-2 -

-3 -

0 <x

i< x <

2 <x

1 2 3 4 5

ass'

Figure A2-4a

3,-
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It is easy to see that the fun' ion decreases as x increases.except on

the interval [1,2] on which it remains,constant. On its entire domain,

the values of h are said to be weakly decreasing.

Ta]en as a class, the easing, decreasing, weakly

weakly decreasing funcltions'sare called.monotone (compare

because the-changes in h Claes of the functions
; ,i

),

always in one direction. '

increasing, and

with monotonous)

as x increases are

C

DEFINITION A2-4a. Let .f be a function -defined on an interval I
.

k and let yi = f (xi) ,.-y,-2 = f(x.2).gor xi , x2 in I . If, for

each pair of numbers xi and x2,,,1 I , with xi': x2 , the
4 0

corresponding values of y satiElfy the inequality

Y1- <:y2 '

Y >Y22
y <: y
1 Y2

Y1 a Y2 '

then f is an increasing function;:

then- f is a decreasing function;

then f is arWeRkly increasing function;

then f is a weakly decreasing function.*
Ale

A2-4

Briefly, thi-sdefillition states that a function which preserves order

relations is increasing; a function which reverses order relations is

.decreasing. Note particularly that an increasing function is a special case

of a weakly increasing function; similarly, a decreasing function is a' special

case of a weakly decreasing function.

DEFINITION A2-4b. A

or weakly decreasing

either increasing or

ftinction which is either weaklyIncreasing

is called monotone: A function, which is

decreasing is called strongly monotone.

For example, the function h of Example A2-4a is .monotone osier- its

entire domain and strongly monotone on the closed, interval 0 < x <1, as-well

9.;','qn the -interval x._>2 .

4 The graph of a strongly Monotone function suggests that the function.

must be one-td-one, hence must have an inverse.

*
In some texts-the term "nondecreasing" is used instead of "weakly

increasing"; "nonincreasing" is used instead of "weakly decreasing."

299 ti
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TH:tOREM A2-4.. If a funCtion iejstrOngly monotone, then itihas an inverse

which is'stroTIgly.monotone in the same 'sense.

, -
,

Proof. We treat the case for f increasing; the proof for f
- . .

-'.decreasing is entirely similar.

3y Definitions A2-4a and A2-4b,' f(xl) .'f(x2) if "and only if xi = x
2

Hence, by Definition A2-3a, f' is one-to-one, and by DefinitiOn A2-3b,

has an inverse

f(x)---tfx

defined for all values f(x) in the range of f .

Finally, g ii an increasing function, hence strongly monotone, by

Definitions A2-4a and A2 -4b.

Example A2 -4b. The function

f : X
-- X11

n 'a-natural.number-, is strongly monotone (increasing) for' all real x >0

(See ExerCise 3 -7. numbe
1

3.:) Hence, f has the inverse function
,.. ,..?,---,',..-'

,s-

(1) ,
n

g : x --... X , X > 0 ,
. --

which is also an increasing function. For,an arbitrary element y in the

doMain of g , we denote g(y)-14-y 967 ';..thus .(1) may be rewritten

(2) : y ++.n .

)

Comparing -(1) and (2), we see t t n,7 is the unique positive solution -x
4 1

of the equation xn = y we call W -the n-th root of 'y for all' real
y.> 0

If= the natural number n 1S'odd, then the function : x---.6-xn is

strongly monotone-for'all real_ x , as is 'its inverse function, This means

that every real number ha. a'Unique n-t, ..t for n Odd. For example, \n
-.. )n "NEfor n odd and a real, .

If n is even, f : X -11. xn is decreesing for all real I C< 0 , and

increasing for all real -x > 0 . If f
1

is the restriction of f
....

to the

domain x > and f2 is the restriction of f- to x < 0 ,.then each of
....

- _
these functions has an inverse, namely i

-:-, t
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g
1

y

5'

g2 y n

A2 -1i.

for even and all real y >0 For n evenp.the positive n-th root of
a nona ,

egative real number is sometimes called its principal n-th fBot., The
A!"

sycipodi
n,

always means the Principal n-th root.

p

1M.

Exercises A2-04-

1. Pro4.re that f : X2 for x >0 is an increasing function. (Hint:
Let x2 > 0 ; then xi x

2
>0 . From this show that x12 > x22.)

2. libicA of the following functionse_nondecre'asing? .zlonincreasing?

decreasing? increasing? In each case the doTn ir. is the set of real.

nuMbers'unless otherwise restricted.

(a) fi : x c ,

(b) f2 : x

(c) f
3

:

(d) f4 -

(e) f5 x sgn x

(f) f
6

x .L)r x < 0

a constant (h)

(1)

(j)

(k)

(g) f7 : , > 0

f

f
9

:

f
10

fll

I I -

x + 'xi

1x1 + lx 11

- II +iix

(x)
3 4

4
,f

3 (x)

71,

For each fUnction.in Problem 2 which is not monotone, divide its domain
o

L parts such that the restriction of,. f tb any of. these parts gives'
'110

a monotone or strongly monotone function.
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A2 - 4

We are givpn that the function

,
,

f
1

is weakly increasing,
. .

f
2

is increasing, `t

.

g
1

is weakly decreasing,

g
2

is decreasing,

in a' common domain. What is the monotone character, if

fol./owing functions:
. ...

(a) f
1

-4- f
2

. (i) f
1
f
2

.

00 f2 + g1 (j) f f
a 1

(c) 'g1 + g2 . (k) f2g1 .

(d) g
2
+ f

1
(2); g f

1 2

(e) fi . f2 (m) g1g2
c I.

(fi f2 61
.

, (n) g2g1

(g)" -3.:
a2 (o) g2f1 .

(h) g2 fi - (p) f
1
g2

4

3JG
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A2-5. The Circular unctions. 7) --
,1

',1 ,

.

:We shal21 treat the circular (or trigonoinetrl,c),fUnctions (sin, cos,,etc.)

not 'so Much as'the geometrical functions to which yoU are accustomed, biat.ss

purely numerical' fu9A1-kons apart from the ideas of geometry. The advantage-of

,
approabhing the. ci rcu-.. ar functions analytically through:the number concept

-
rather than through geopetric.1 concepts is that we can then develop systematic

-4(4computational,techniques for-their use and greatly exp d their range of

applicatio'n., For example, the property of the circulat functions essential

for higher analysts-is their-periodicity, a property to which the considers-

ti9ns of-elementary geometry,and trigonometry scarcely. point. The role of

periodicity in our understanding of peural phenomena is profound (see Section

The circular functions correspond direct/y to the simplest periodic

motions, the turning of a wheel or the motion of a particle transcribing g
. V

circle at unifiarm speed. .Yet combinations of these game elementary circular.

functions can be used to represent the most intricate periodic phemonena.

(This is the Province of Fourier analysis; the elements of this subject will

be within reach when you have completed the calculus.)

The concept of ci.rcular fUhction is based upon ideas (like the idea of

limit) which are not usually stated. precisely before the calculus. Nonetheless,

the circular functions are too important to neglect: We shall use them freely,

assuming all the properties which are familiar to you'from your earlier courses

without concern for a logical derivation of these properties. In fact, as the
O 1

situation warrs ts, we shall also argu geometrically and intuitively to obtain

other'Ooperties we may need. Eventual (Section 8-5) we shall be able'to

define the circular functions purely analytically and derive all the properties

used earlier. It is'temptdhg to try` to be systematic and to develop the -theory

of circular functions from the beginning by means of a precise definition, but

it is doubtful that such an approach could be made meaningfyl without the prior

intuitively based exploration.

The following fundamental properties of the circular iunctions listed

below are then to be taken initially as assumptions until we, can do better and

prove them from a-precise definitions. assumed in the following that the

dolitain of sin x and. cos x is the set of all real numbers.
-a3 "

. In this text we use radian measure only, as in Properties (f) and (.2).
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sin x is periodieVith Period' err

sin =,1

-sin2x + cos2x = 1,

sin(x + y) = sin x cos y + cos x sin y -

sin(-x) -sin x

This brief lcst is sufficient for the definitiOn and the derivation of all
the other comMon identities. 'We list some of the more useful one1elow.

(6)

(7)

cos x = sin(x +.71)
2

cos(-x) = cos x

(8) sin(x t y)'= sin x cosy ± cos x sin y.

i7(9) cos(x y) = cos x cos y . sin x sin y

'(10) sin 2x . 2 sinJx cos x
4

(11) cos 2x = cos 22x
- x = 2 cos2x - 1 = 1 - 2 sj..n- x

(12) sin -f
x 1 - cos x

2

(13)
1

t

, cos x
-1-

2
1/1 + cos x

-2-r
:

13:1:5 sin x - s5n y . 2 cos x ÷. Y sin X - y

1
+ y, -(15) cos x - cos y = -2 sin sin x

2

COt X
'N sin x 1(16) 2 x

Xcosan
*7

4
C1(11)

----------.-
sec x .

; , cos ?c

(18) csc x - 1
sin x0 -

(19) .1 1 + tan2x . sec2x

(20) cot2x + 1 = csc 2)

t.1/4an x + tan y(21). tan(x ±
1 tan x tan- y

(22) 'x
- mx1 - cos x sin.an 2 sin x 1 + cos X

304
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There is one additional fact which may be found useful: a linear combina,

tion

can be written in the form

, 4/here

a cos x + p sin x

A sin(x + a)

sin a = cos a = A ,

A = Ia2 +

.1

Exercises A2-5

lin the following problems, you may assume properties 1-5 as given on page 3.401.1

Also, after aziy particular identity has been proved it may be used as a true

statement in any problem which follows.

1. 'Prove:

(a) sin 0 = 0

(b) cos 0 = 1
. _

(c) cos
2

= 0 .-

2. Prove:

(a.) sin(x = cos X .

(b) sin(x + 70.= - sin x,.

(c) cos(x + - sin

(d) r, cos(x +o r) = _ cos x .

(e) cos x.= cos(-x) , or equivalently, cos(x
2

= cosir( - x)

(d) sin Ir = 0 .

(e) cos 7r = -1

(f) cos(- = 0 .
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3. Prove:

(a) sin(x - y) = sin(x cos y - cos x sin y

(b) cosCx ± y) = cos x cos y ; sin x sin y .

(c) sin 2t = 2 sin t cos t

(d): cos 2t = 2 cos2t - 1 = 1 - 2 sin2t .

(e). sin .3t = 3 sin t - 4 sin3t

cos 3t 4 cos3t - 3 cos t

tan x t tan ytanCx 31-,
1 T. tan x tan y

sin p- sin q= 2 cos P ; 9 sin 2-=-2

(i) cos p - cos g = -2 sib P
2
+ cl. sin P

2
gi.

(i) tan -
t 1 - cos t sin t
2 mint __

1 + cos t

4. Prove:
\,,..

(a)
x + /1 -sin -E = y

2
cos x

.
*Ii

(b) cos -1-z = ÷ /1 +
2
cos x

(c) EXplain the significance of the t sign in (a) and (b).
O

5.- Determine the numerical values of the following:

(a) sin -2E i(f) tan2

(b) cos 13n cos -8-51T

(c) tan 5n (h) sin
3 .

(d.) sin(- ) cos3 -gam

lc(e) sin Tr
(i)

5
t '

.6. Sketch thkgraph of eacll of the following fUnctions. -For.those functions,

which are periodic, indicate their periods. Indicate those functions

which are even or odd.

(a) f x cos x

23-c
(b) f : x + cos itx

(c) f : x sin x + cos x-

(d) f : 2x
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(e) f !sin 3Trx1

(f) f : x cos2nx

(g) f x---2 sin x2

(a) What is the period of sin ax , a/ 0 ?

('b) What is the period of sin(ax + b) , a 0

(c) For what valu6s of a and b is the function odd? even?

8. For,each pair of functions f and g find the composite functions fg
d'

and gf and specify the domain and range (if possible> of each. Also,

sketch the traph of each, and give the period (fundamental) of those

which are periodic.

(a) f x -sin nx ; g : x .

(b) f anx , a > 0;

(c) f : xl

(d) f : xa max(sin nx - [x]) ; g

st, g

g

: X x .

: ----4[X]

Solve for all x in the integral 0 < x <

A 10. If (3) on page 304 Is
to (5), show that CO

A 11. Show how to solve the

trigonometrically.

sin
m
x + cos x = 1 , ( m an ''''integer > 2) .

replaced-by cos 'x = +-2) , then using (1)

s
2rx + sin2rx = 1 , where r is rational.

cubic equation

4x3 - 3x = A

N

307

Oar< 1

41.



A2-6

A2-6, Polar Coordinates. c.

A fundamental link between the algebreof numbers and the. geometry of

Points was forged by Rene Descartes (1596 - 1650) when he introduced the

notion -of representing a point in the plane by means of an ordered pair %±-

numbers, Beautiful in its simplicity, this concept paved the way for the

development of coordinate geometry and calculus. By.introducing a pair of

Perpendicular number lines (coordinate axes), Descartep was able to assign to* -

each point in the plane a unique pair of real-numbers. We call these numbers

the (rectangular) cartesian coordinates of the point; you have used them ever

Pince you first began to represent equations by their graphs.

Other coordinate systems have been invented since:_Descartes' time because

they are better adapted to treat some problems which are awkward to handle in

cartesian coordinates. We consider here the polar coordinate system and,a few

examples of its use.

We suppose that we already have a rectangular (cartesian) coordinate
-

system _in theplane. We iodate point P in the plane by polar. coordinates,
. .

an ordered 11.8.1-2- of real numbers (r,e) where in is the length of the

segme OP (sometimes called the radius vector) and S is the direction

angle OP with the positive x-axis (polar axis) (Figure A2-6a).;

'Figure A2-6a

r is sometimes called the rsdial coordinate and e the polar' angle or
azimuth.



A2-6

There are infinitely many such angles for each point P ; if 9 is one angle)

then e t 2nn (n = I , 2 , 3 , ...) are the others. Thus, a point thay be

identified by-infinitely many pairs of polar coordinates. For example

(Figure A2-6a), point P with polar coordinates , also has coordinates

(4 2E) -- 21) and, in general, (4 11+ 2n r) -for any integer n
/ , / 3 , 3

The pole (origin) is a specia1 case: to it we assign as polar coordinates any

pali (o,e) , ,e any real number.

When we assign polar coordinates to locate a point, it is customary to

allow r also to be negative. For r > 0 ,-the point (-r,e) is located

symmaically to the point (r,9) with respect to the origin (Figure A2-6b);

it has coordinates (r, A 4- 7c) also.

4/.

(r,e 47''n)

Figure A2

9

In a cartesian coordinate system every point in the plane has a unique

pair of-coordi es (x,y) . In a polar...coordinate system, by contrast, thisna4....

is not true; a give \point in the plane does not have a unique representatiori.

(r,e) in polar coordinates (see point P in Figure A2-6a).- In both coordi-

nate systems, however, a given pair of coordinates specifies a unique point in

the plane.

A relation betWeen x and y maybe represented by.a graph in a

cartesian coordinate plane.. A relation in r and e may be represented

by a iraph in a polar coordinate system; a point lies on the graph if and only

if it has at least one coordinate pair which satisfies the given rely -ion.

We discuss the graphs of a few functions defined by equations in polar

coordinates.

309.
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The graph of the equation

contains all points (c,e) , e

having_its center at the pole.

circle.

The points for Which'

11%

3

r-= c

any real number; it- is a circle of radius

The equatiorIlip = -c describes the same

9
c -

lie on the line passing through the pole which forms an angle of .c radians
with the polar axis; each poin of the line has coomainates (r,c) for some
real r For r 'positive, th points form the ray in directioh,e , for r
negatd.Ve, the ray has direction 61 + st . The line has infinitely 'mart equa-
tions e = c + n:r , n an integer

The circular functions of e e especially conveniently represented in
polar coordinates because the entire graph is traced out in one period. We
shall illustrate a procedure for sketching a graph of such a function using. ,

polar'_cooll.dinate graph paper. Note that the function specifies the graph;
fliinclon,' however, cannot be recovered from its graph in polar coordinates.

o

.-Mcample,A2-6a. Sketch a graph- of the function defined by

r = 4 cos 9 .

SihCe r is a ftnction of 8 , we consider values of 8 and calculate
the corresponding values of, r . We know that the cosine increases eraM. the
value '0' at. 8 = - -f to 1 at e.,=AE) and ,then decreases to 0 at 8 = .

'Ke.A, in this interval, r increases.from 0 to 21. and th en decreases to
0 . Since cos(e Tc) = -cos 8 , the point (4 cos(e sc), e) is the same as
(-4 cos 4.; e) , and the curve for - <*e <- is the entire graph.

To.sketch the graph of the function, we calculate r for a few convenient
values of e (- 2t T'

3 , etc.), locate the correspOnding points'on polar
coordinate paper; and sketch the graph (Figure A2-6c); it appears to be a

circle and we shall presently verify that 'it is.

c

316
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Figure A2-6c)

Since point- P in the plane has both rectangular and pole

(--

P(x,y)
(r,(9)

nates (Figure A2-6d), for r > 0 , we

have from the trigonometric funCtions

of angles

(1) x = r cos e y = r sin e .

We leave it to you to verify that

equations (1) hold ft)r r < 0 .. Thus

the rectangular and polar coordinates

of each point in the plane are zglated

JVby (1). It follows that

( 2)
2 2 2 .x y = .

r

311
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e- = 0
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Figure A2 -6d
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Now we re-examine the function definea by r = 4 cos e (Example A2-4a)

.and prove that- its graph is a circle. We Ntall do so by transforming the

given equation into an equation involving rectangular coordinates x and y
Now the given equationFr = 4 cos 8 has the same graph as.the equation

.( 3 ) r2 = 4r cos 6 ,

fcix= if -r 31.0 , we may divide both members of the equation by r to obtain the

given equation; r = 0 corresponds to the fact that the pole is on both

graphs. This may not'be immediately'Obviaus since only certain pairs of

coordinates_representing the pole will satisfy the equati6n r = 4 cos 6 .

gFor example, both (0,fP) and (0, 72;) represent the ,pole, yet only the latter

of these pairs satisfies r =4 cos e .

or

We use (1) and (2) to obtain from (3) that

2 2 ,
x + y = '4X

(x - 2)2 + y2 . 4 ,

an equivalent equation in rectangular coordinates. We recognize this as an '

equation of the circle with center at (2,0) and radius 2 , verifying the

graph in Figure A2-6c.

Example A2-6b. Find an equation in polar coordinates of the curve whose

equation in cartesian coordinates is (x
2 + y2)2 =

2
(x

2 - y2 ) .

Applying, Equations (1) and (2) we have

= a2r2(cos29 - sin26)

=
'82

r
2

cos 2e .

This is equivalent to

r2 = 0 (the pole) d r2: = a2 cos, 28 .

Since- r2 = a2 cos 28 'is satisfied by '(0 , ,a set' of polar coordinates

for the'pole, we 'see that' = 0 contributes no points not in the graph of

r
2
= a2 cos 2e . Hen6e, the latter is an equation in polar form Which is the

equivalent of the given one. The graph of this equation is called the

a



:Iemniscate of Bernoulli and is displayed i A5a.
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In Section 12-4 we. use an equation /4.T an ellipse in polar form; here we

develop.an equation which, for suitable choice of a parameter, will represent

either a parabola, an ,ellipse, or a hyperbola. For this purpose we%leed the

definition of these curves.(con'ic sections) in terms of focus, directriand.

eccentricity. Every conic section (other than the circle) may bd defined to

be the set (locus) Of all points P such that the ratio of the. distance

between P._ and a .fixed..fooint F (the focus) tollhe distance between P an

a fixed line B (the directrix) is a positive constant R ; called the.

eccentricity of the conic section. If e = 1 the conic section is a parabola,

if 0 < e < 1 it is an ellipse, and if e >1 it is a Ilyperbola.

In ordi to derive an equation

it is convenient to place,;Z focus

F at the pole (origin) and the

directrix k perpendicular to the A

extension of the polar axis at dis

in polar coordinq,es of a conic section,
2

tance p >0 from the pole, as shown

in Figure A2-6e. (Other orientations

are possible; see Exercises A2-6,

Nos., 8-10.) Point P is any point

of the conic section.

We let (r,e) be any pair of
11

polar coordinates of P for. which.
..

' Figure A2-6e -

r >0 ; then FP:= r .and DP...p + r cos, e (Figure A2-6e). The- defini:tion4'.

of _the conic sections requires that Tys. e or. p r
r
tos 6) 4

e . Solving+

P( r, e)

------e10-p : r cos
8 =.0

for r we obtain

r _
1 - e cos e

ep

which we take to be the standard form of the polar equation of conic sections

having focus and directrix 'orie4ed as in Figure A2-6e. From Equation (4),

if e < 1 (ellipse e-or parabola), then r > 0 ;,if e - > 1 (hyperbola) , r may

be negative and these values give us the branch of the hyperbola.lying to the

left of the'directrix.

This curve is defined as the set (locus) of points P such that'the
product of the 'distances of P from two.fixed points is the ,square 'of half
the distance between the two fixed point vr

t

I
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-

Example A2-6c. Describe an sketch the graph of the equation

. 16
5 - 3 cos e

We may put this equation in the
.

-16from. which e = 3 and. p = -3- Since e 1
5

focus F
1

at the pole.andajor axis

value* 0 and it , we find the ends of the major

(2,v) . Thus-the length of the major axis is' 10'

other focus is the point- F
2
(6 o) Since

a focus and corresponding directrix of the

directrix 2
1

corresponding to the focus at the

standard form

16
5

1 3 cos
5

3 16
5 3
3 0

1 - cos e

the graph is an ellipse with

on the polar ailzs. By giving e the

axis to be' (8,0) and

the center of the ellipse

is the point (3,0) i and the
16

(the distanA between

ellipse), the equation of the
16pole is r cos e
3

.(see

£2 corresponding to F
2
(6,0)"

16 vand have the point 1.6 .

5 5 2

the directrix

then r

Exercises A2-6, No.6a.),and the' equation of,

we

is r cos e =
3

. When e

at one end of' the focal chord

(latus rectum) through F1 . The other endpoint has polar coordinates

16 3v
; these points help, us to sketch the ellipse as shown in Figure A2-6f.

22

Figurk A2-6f c

e .0

4.
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C

Exercises A2-6

Find all,polar coordinates of each of the following points:

( °9.) (6,
( ) (6,

(b) (-6 , -7r) . a) (-6,- - .

2. Find rectangular coordinates of he points in EXercise 1.

3. Find polar coordinates of each f the following points given in rectangu-

lar coordinates:

(a) (?4., -4)'.

(b) (.7-29 , (f) (-3 ,

-(- 2 ,.,72-1-5) (g) 1)

(d) (0, -10) (h) .

(e) (-3 , o)

4. Given the cartesian coordi ates (x,3.-) of a point, formulate unique

polar coordinates. (r,01 /for 0 < B <Tr.. '(Hint: use arccos- .)

5;;P. Determine the polar coordinates of the three vertices of an equilateral

triangle if a side of t e triangle has rength L , the centroid of the

triangle*oincides wit the pole, and one angular coordinate of a vertex

is e
1 radians.

.6. Find equations in p coordinates of the following curves:

='c a c stant.

y = c ,c a constant.

-ax c.:

x2 ..- 10-2

y2
....-_fax . .

2 2 2 .--\x - y .. a .

0

7. Find equations in rectangular coordinates of the following curves:

(a) 2-\ = a .

(b) r sin

(0)- r = 2a sin

(d) r - 1 - cos 09,

(e) r = 2 tan 0 .

-315
32.2_
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8. Derive an equatiOn in polar coordinates for conic sections with -a focus

at the pole and directrix perpendicular to the polar axis and p units
to the right of the pole.

9. Repeat Number 8 if the directrix is parallel to the polar axis anii
,units above the focus at the. pole. -

10. Repeat Number 8 if.the directrix is parallel to the polar axis and p
units below the focus at the pole.

.11, Discuss and sketch each of the following curves in polar coordinates.

(See Example A2-6c and Numbers 8, 9, 10.)

(a) r - 8
- cos 49

(b) r -1-
12
3 cos e

(c) 36
r 5 - 4 sin e

(-) r -
16

5 + 3 sin e

(e) r sin e = 1 - r

12. Certain types of symmetry of curves in polar coordinates are readily

detected. For example, a curve is symmetric about the pole if the equa-

tion is unchanged when r is replaced by -r

occurs if an equation is unchanged when

(a) e is replaced-by -e ?
(bY efis replaced "by sr - e ?

.(c). _.r and. B. are replaced by -r aAd -e , respectively ?,

What kind of symmetry

(d) -e 'is 'replaced by e ? .

4-

13. Without actuFilly sketching the graphs, describe the

graphs of the following equations:

(a) r2 = 4 sin 2e .
CI') r(1 - cos e) = 10 .

,(c) r = cos2
25 .

IL"
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14/ Sketch the fol n polar coordinates:

(a) r = ae r = a2sin2a cqs2e

ro

(b) r = a(lr- cos.9) (e) re = a .

(c) /4.= a sin 2e .

154 In each'ef the follOwl , find points of intersection of the given

pairs of equations. (Rec the pblar representation of a point is

not unique.)

(a) r = 2 -, 2 sin e , r = 2 - 2 cos 0

(b) r = -2 sin 20 , r = 2 cos ,9

(c). .r = 4(1 + cos 0) ,.r(1 - cos E3)" = 3

ir

-
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Es* Appendix 3-

MATHEMATICAL INDUCTION

A3-1. The Principle pf Mathematical Induction..

The ability to form genet-al hypotheses in the light of a limited number

of acts is one of the most important signs of creativeness in a mathematician.

Equ =l y important is the ability to prove these guesses. The best way to show

how to guess at a general principle from limited observations is to give

examples.

101
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Example A3-la. Consider the sums of c6terecutive odd integers

Aft

1 = 1

1 3 4

+ +.5 . 9

1 t. 5 + 5 + 7 16

5 + + 9 . 25
Aser.

Notice' that in: each case. the sum is the square of the nuMber of terms.
- 0

Conjecture:.*The. sum of the first n odd positive integers is n
2

(This is true. Can yOU shoW it?)

EXample A3-1b. Consider the following inequalities:

1 < 100 , 2 < 100 , 3 < 100 , 4 < /00 , 5 < 1 po etc.

Conjeture: All positive integers are less than 100 . (False, of

course.)

Example A3 -lc. Consider the number of complex zeros, including the

epe-t-3\.tions, for polynomials oe various degrees,

3.24
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S

- Zero degree: a0 ,

First degree:
alx a0''

Sdcond degree: a
2
x2 + al x + a0

IL

no zeros
(a0 / °)

-a
0one zero at x

a,

two zeros at

x -
2a

2

/ 2+._ - 14.aoa2

Conjecture.: Every polynomial of degree n has exactly n complex
zeros when repetitions are counted. (True.)

Example Observe the operations necessary to compute the.roots
from the- coefficients in Example A37.1c.

Conjecture: The zeros. of a polynomial of degree n can be given in

terms.of the coefficients by a formula which involvei only addition, s:t.i.Xtrac-

tion, multiplication, division, and the extraction of roots. (False.)

Example A3 -le. Take any even number except 2 and try t6 express it as
the sum of as few primes as pbssfble:

24. 2-r+ 2 , 6= 3 + 3 ,-"8 = 3 + 5., = 5, + 5

12 = 5 + 7 , = 7 + Z , etc.

j -Conjecture: Every even number but 2 can be expressed as the:sum of
two primes. (As yet, no one has been able to prove or disprove this conjec-
,ture.)

Common to all these examples is the fact that we are trying to assert

something about all the members of a sequence Cf thfings: the sequence of odd
integerS, the sequence of positive integers, the sequence of degrees of poly-

nomials, the sequence of even numbers greater than 2 . The sequential char -

acter of the .problems naturRlly leads to the idea of sequential proof. If we
know something is true for the first few members -of the sequence, can we use
that result to ve its truth for the next member of the sequence? Having
done that, ca we now carry the prOof on to one more member? Can we repeat,,.

the process.indefinitely?

Let u- s try the idea o ent proof on Example A3 -la. Suppose we-know

that for the first k oci intege s 1 , 3 , 5 , , 2k - 1

(1) 1 4- 3 + 5 + . . + (2k - 1) =



can we prove that upon adding the next higher, odd number -(2k + 1) we obtain

the next higher square? From (1) we have at once by adding 2 + 1 on both

sides,

+ 3 + 5 + . . . + (2k 1) I ( .+ ) (.2k
1) L.. 1)2..

It is clear that if the conjecture of_Example A3-la is true at any stage then 1.40

is true at the next stage. Since it is true for the first stage, it must be

true for the second stage, therefore true for the third stage, hence the

fourth, the fifth, and so on forever.

Example A3-1f, In many good toy shops there is a puzzle which consists of

three pegs and a se, of graduated discs as depicted in Figure A3-la. The problem

posed is to transfer the pile of discs from one peg to another under the

following rules:

1. Only one disc at a time may be transferred from one peg to another.

2. No disc may ever be placed (>r -a smaller disc.

Figure A3 -1a

Two questions arise naturally- Is it possible to execute-thetask under

the stated restrictions? If it is possible, how/many moves does it take to

complete the transf r of the discs? If it were hot for the idea of sequential

proof, one might live difficulty in attackiT these questions.

As it is, we observe that there is no problem in transferring

If we have to transfer two discs, we transfer one, leaving a peg free
.

for

the second,disc; we then transfer the
411-

second disc and cover with the first.

321 32b



A3-1

If we have to transfer three discs, we transfer -the top two, as above.
This leaves a peg for the third disc to which it is then moved, and the first
two discs are then transferred to cover the third disc.

'lie pattern has now emerged. If we know how 'to transfer k discs we
can transfer k + 1 in the following way. First, we transfer k disc
leaving the (k .1)-th disc free to move to a new'peg; we move the (k + 1)-th
discand then transfer the k discs n,to cover it. We see then that it
is possible''to move any number of graduated discs from one peg to another.ith-
our violating thetrules (1) and (2), since knowing how to move one disc, we
have a rule which tells us how to.transfer two, and then how to transfer three,
and so du.

To determine the smallest number of moves it takes to transfer a pile of
discs, we observe that-no disc can be moved unle-all the discs above it have
been transferred, leaving a free peg to which to move it. Let us designate by
mk the minimum number _of moves needed to transfer k discs. _ To move the

a+ 1?-th disy, we first need mk moves to transfer. the discs above:it to
another peg. After that we can transfer the (k + 1)-th disc to the free peg.
To move'the (k + 2)-th disc (or to conclude the game if the (k + 1)-th disc
is last) we' must now cover. the .(k +,1)-th disc with t. preceding k' discs°5_ .

'this transfertransfer of the discs cannot be accomplished'i less than mk! moves.
We see then that the mi limum numbed of moves for k + 1 discs is

mk+1 2mk 4. 1

This is a recursive' expression for the minimum number of moves, that is,
if the minimum is known for a:certain number of discs, we can calculate the
minimum for one more disc. In this way, we have defined the minimum number of
sequential moves: by adding one disc we increase the necessary number ofoves
to-one more than twice the preceding number. It takes one move to move one---
disc, 'therefore it takes three moves, to move two discs, arld so on.

Let.us make a little table (Table I).

322.,
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Table 1 .

k
t

1 2 3 4 5 )6 ;N\

mk -3 -7 15 31 63 127

k = number of discs

"mit.= minimum number of moves

Upon adding a disc we roughly double the number ofmoves. This leads us

to compare the number of moves with the powers of .two: 1 2 4 8 , 16 ,

32 r 64 , 128),... ; acrd we guess that mk = 2k 1 -'. 'If this is true for
-4

some valu
j

k , we can easily see that it must be truefor the next, for we
. ..-.have

and this is the value of

for mk ids valid when k

true for 2

mit+1 *

= 2(2k = 1) 1

= 2
k+1 '...

2 + 1

2k+1 -....

1 , for n = k +1 . We know that_the formula

but nol,r wg can prove in sequence that it

3 , 4 so./on.and son.

According to persistentrumor, there is a,puzzle.of this kind in a most

holy monastery hidden deep in the Himalayas. .The pukae consists of 64

discs of pure beate d and the-pegs are diamond needles. The story relates

that the game of ransferring the discs has been played night and day by the'

monks since the eginning pt theworld and has yet to be concluded., It also

has been said th w]ieh the 64' disos are completely transferred, the world

will come to an en:. The psicists say the earth is about four billion.Year

cild,.give or take a 'billion or. twin.- Assuming that the monks move one disc

every second'and play in the minimum number of moves, is there any cause for

pamiC? (Cf. Ball, W. W., Mathematical Recreations. New :York: Macmillan Co.,

1947; p. 303 ff.)

The principle of sequential proof', stated explicitly, Is this (Fir-St

Principle of Mathematical Induction): Let Al A2 , A
3

, ... be a sequence

of assertions, and let 'H be the hypothesis that all of these are true. The

hypothesis H 111.11 be accepted as praved:if

1. There is-a general proof to show that if any assertion, Ak is true,

then the next assertion Ak.4.1- is true;

323
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2.. is a special proof to show that Al is true.

If tare only a finite number of assertions in the sequence, say ten,

then we need only carry out the chain of ten 'proofs explicitly to have a tom-
,

plete proof. If'the assertions continue in sequence endlessly, .as in Example

a, then we cannot possibly verify directly every link in the chain of proof.

It is just for this reason. -in effect that we can handle an infinite chain of

proof without specifically examining every link- -that the concept of sequential
proof becomes so valuable. It is, in fact, at'the heart of the logical devel-

Opment of mathematics.

Through an unfortunate association of-concepts this method of sequential
proof has been named "mathematical induction. Induction, in its common

English sense, is the guessing of general propositions-from a number of

observed facts: This is the way one arrives at assertions to prove. "Mathe-

matical induction" is'actually a method of deduction or proof and not a proce-
.

dure of guessing, although to use it we ordinarily must,have some guess to

test, This usage. has been in the language for along time,' and we would gain

nothing by changing it now. Let us keep it then, and remember that mathemati-

cal usage is special and often does not resemble in any respect the usage of

common English.

In Example A3 -la, above, the assertion A
n

is

+ (2n - 1) = n2 .1 3 5 + .

We proved first, that if
\

odd numbers .is k2) then

odd numbers is (k + 1)2.

Ak is true (that is, the sum of the first k

Ak+i is true, so that the sum of the-first k + 1

Second, we observed that is true: 1 = 12

These two steps complete the proof.:

Mathematical induction is a method of proving a hypothesis about a list

or seqUence of assertions. Unfortimately it doesn't tell us'how to make the

hypothesis in the first plaee. In the example just considered, ft-vas easy to

guess-from a few soetific instances that the sum or-the first n odd numbers

is' n2 , but the. next problem (Example A3-1g) may not be so obvious.

Example A3 -lg. Consider the sum of the squares of the first n positive.

integers,

2 -2
1 + 2 + + n2 .

We ..find that when n = 1 the sum is 1 ; when

328.
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n'= 3 , the sum is 14 ; and so on. Let us make a. table of the first few

values (Table II).
"lb

Table II
.

2

_

3 4 5 6 7 AC

sum 1 1 30 55 91 140 204

Though some mathematicians might be Immediately able to see a formula

that will give us the sum, must of us would have to admit that the situation

is obscure.. We must look around for some trick to help us discover the pat-

tern which iS surely there; what we do will therefore be a personal, individ-
ual matter. It is a mistake -6'think that only one approach is possible:

Sometimes experience is a useful guide-. 'Do we know the solutions to any
similar problems? Well, we have her the sum of a sequence;-and Ekample A3a

also deal) with thesum of a sequence: the sum of the first n odd numbers
.is. n2 'Consider the sum of the first n integers themselves (not their

squares)-what is,

1 + 2 + 3 + n ?-

,-.

This seems to be a related. problem, and we can s e it with ease. The terms

form an arithmetic progression in :which the.-first-term is I and the common
'difference is also 1 ; the sum, by the usual.formula, is therefore

,.,

.

(n + 1),. +

1 + 3 + 5 +

+2 -4- 3 + . . . 'a2+ n.

n
2

'Is there any pattern here which might help with our ,present problem?

These two formulas have one common feature: both are quadratic poly-
nomials in.n . Might not the formula we want here also be a polynomial? It

seems unlikely that a quadratic polynomial could do the job in this more

complicated ?roblem, but how about one of higher degree? Letts- try a cubic.:
. .

assume that there is a formula,

2212 + 2 + + n2 = an. bn2 + cn.+ d ,

325
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Where aib,d, and d are numbers yet to be determined. Substituting

n = 1 , 2 r 3 , end successively in this formula, we get

Solving, we find'

2
12 . a. + b + C. + d.

12+ 2 2 8a + 4b+ 2c + d

12 + 22+ 32 . 27a + 9b 3c + d

1
2 + 22 + 32 _+ 1E2 = 646. + 1610 + 4c + d

We therefore conjecture that

2 '2+ 2

This then is our assertion

We have Ak

12 4 . + - s k(k +1)(2. 1)

Add (k + 1) to both sideS, factor, and simplify:

1
2.+ 22 + (k + 1)2 1 ,kkk + 1)(2k+ 1) .(k.+ 1)2. .

1 1, b c

g
. . 2 1 "I n2++ n

3
n + - n

2

1
s n(n + 1) (2n,+ 1) ".

-
An now ow-letus proVe it.
.

a,

and this last equation is just

Mbreover, Al ,which states
4-

.

4

1

1
= 15 (1)(2)0) ,

(k.+ 1)[*- k(2k + 1) + (15 + 1)1

1
.6 (k 1)(k + 2)(2k + 3) ,

, which is therefore true if. Ak is true.

is true; and A
n is therefore true for each positive integer n .

There is another formulation of the principle of matheMatical iiiductiOn

which is extremely useful. This form involves the assumption in the tequen7

tia1 step. that every assertion up to a certain point is true; rather than just,

.
k

326 3 3...i



A3-1

the one assertion immediately .preceding. SRecificially, we have the following

(Second Principle of Mathematical Induction): Again let Ai , A
2

, A3 ,

be a sequence of assertions, and let H be the hypothesis that all of these

are true., The hypothesis H will be accepted as proved if

1. There is a general proof to show that if every preceding assertion

, A2 , Ak- is true, then the next assertion Ak is true.

2. There is a special proof to show that Al is true.

It'i not hard to show that either one of the two principles of matheA-

,matiCal induction can be derived from the other. The demonstration of thin is
-r

left as an.exercise.

The value of this second principle of mathematical induction is that it

permits the treatment of many problems which would be quite d4rficult to

handle directly on.th,7 basis of the firSt principle. Such problems.usupily

present a more complicated appearance than the kindhich'-yield-directly to
_

an attack by the. first principle.

',..15:anple'.A3,ah . Every nonempty set S of al nutbers (whether.finite

Cd inflate) contains EJ_Ieast.element.

The induction is based on theact that. S' contains some natural
, ;

The assertion .-Ak is that if k is in S then -S contains a

leaSt element.

initial Step: The assertion Al- is that if -IS contains 1 , then it

contains a.least number. This is certainly true, since 1 is, the smallest

natural Number and so is smaller than any other member-of S .

.

Seduential Step: We assume Al %is true for all natural numbers up to

-and including k . Now let S be a set containing k + 1 There are two

possibilities:
C--""

1. S contains a natural number p less than k + 1 . :In that case p is

less than or-equal to k . It follows that .S contains,a least element-.

. S contains no natural number less than k + 1 . In that case k + 1

least.

This example is valu ble because it is a third principle of mathematical

induction equiv ent to the other two, although not an obvious one to. be sure.

An amusing example of a "proof" by this principle is given by Beckenbach in
.6

the American Mathematical Nbrithly, Vol. 52; 1945.

r".
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THEOREM. Every naturl number is interesting-

Argument.- COnSider the set S of all
This set contains a least element. What an

in the'set.of rminteresting nuMbers;,, So S

after all (Contradiction.)

uninteresting natural number$

interesting number, the smallest

contains'an interesting number

The trouble with this "proof" of course-is that we have no definition of

"interesting "; one man's interest is another man's boredom.

One of the most important uses of mathematical induction isin definition
by recursion, that is, in defining a sequence'of things as follows: a defini-

tion is given for the initial object of the sequence, and a rule is supplied

so that If any term is known the rule provides a definition for the succeeding

one.

For example, we could have

following way:,

Initial Step : ao.= 1 .

defined a (a / 0) recursAvely in the

Sequential-Steak= a., a .(k =.0 , 1 , 2 , 3

Here is another useful definition by recursion: 'het

product 6f the first n positive .1.ntegers. We can define
as follows:

Initial Step: 1! = 1 .

Sequential Step: (k + 1)! = (k + 1)(k!) (k = 1 ,-2 , 3 ,

Such definitionS are -convenient in proofs by mathematical induction.

denote the

nn! recursively''

Here is an exmpIe which involves 'the two definitions we have jUst given:
_ .

Example A3-ii. For all positive integral values n , 2n D
1

< nt The
proof by mathematical induction is direct. We have the following eps.

Initial Step: =.1 < 1! = 1 .

Sequential Step: Assuming that the'assertion'is true at the k-th step,

we seek to prove it for the (k + 1)-th step. By definition, we have

(k + 2): = (k + 1)(k!) .

From the hypothesis, k! > 2k-1 and consequently,

(k + 1) : = (k + 1)(k!) >_(k + 1)2k-12k71 > 2 - 2
k-17
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sine k > 1 (k is a positive Integer We conclude that (k + 1)!

The proof is complete.

Before we conclude these remarks on mathematical Induction, a word of

caution. For a complete proof by math6Matical induction it is important to

show the truth of both the Initial ,step end the -sequential step of
*
theInduc-

.-

tion principle being used. There. are -many examples of mathematical Induction

gone haywire because one of these steps fails.. Here are two examples.

xample .

Assertion: All natural numbers are even.

Argument: For the proof we utilize the second principle of mathematical

indUction and take for Ak the assertion that all natural nuMberS less than

or equal to k are even. Now cc4csider the natural number k + 1 . It i
be any natural numbear with i <: k . The number j that i + j = k + 1

can easily be shown to be a natural number -with j <; k. But if I < k and
j < k , both i and j are even; and hence k + 1-. i + j , the sum of two .

even numbers, and must itself be even!'
4

Find the hole in thik argument.

Example A3-1k.

Assertion.: All girls are the. same.

Argument: Given girls designated by

a and b are the same. -Consider any set

Clearly,-. if a and, b denote girls in SI

true for any set of k--girls that they are

containing k 1 girls g g2 ./ gk ,

girls, g1 g2 , , gi , are all:the same,

the k girls g2 g3. A , gk , gki.a . It

= gk . We conclude that all girls of a

integral number of them are the same. : Since

-number of girl's. in the _whole world, the assert

Sl

5

and 10-, let

conWrirS
then a = b .

au

a = b mean that

just one girl.

Nov suppose it is

Sivia be a setthe same. Let

By hypothesis the k

but -by the 'same argumeAt so' are

follows that :z1 g
2

set containing any'positive

Integralthere is only a positive

Find the. hole in this argutent.

We
original
that all
to write

ion is proved.

are not trying to express an overly blase''attitude about girls. The
of this example (attributed to the famous logician Tarski) had it
positive integers are the same; however, isn't it more interesting
about girls?
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Exercises A3-1

1. Prove by mathematical induction that 1 + 2 + 3 + + n = 1
n(n + 1)

2. By mathematical induction prove the familiar result, giving the sum of
an arithmetic progression to- n terms:

a + (a + d) + (a + 2d) + (a + - 1)d) = 2 [2a + (n - 1)d] .

3. By mathematical induction prove the familiar result, giving the sum of a
.geometric progression to .n terms:

2 -1 a(rn - 1)a + ar + art + . . + am-1
1

Prove the following four statements by mathematical induction.

4. 12 + 32 + 52 + ...+ (2n - 1)2 = 3 (4n3 n)

5. 2n < 2n .

6. If p > -1 , then, for every positive integer n (1 +

7. 1 + awt 3 2
2

+ + n 2n-1 = 1 + (n 1)2n .

P)11 > 1 + np .

Prove the following .by the second principle Of-Mathematical induction.

8. 'or .p.11 natural numbers n number n +.2. either is a prime or canp
be factored into .primes.

9. For each natural number n 'greater than one, let Ur; be a real number

with the property that for at least one pair of natural numbers p , q

with -p +q=n, U =-U +n p q
When H. I. , we define. U1 =Ilk where a is some given real number.

Prove that U = na for all n .

10. Attempt to prove 8 and 9 from the first printiple to see what difficulties
arise.

In the next three problems, first discover a formU1a for the sum, and then'

prove by mathematical induction that you are correct.

1 1 1 1
11. 2. 2 2 3 n(n + 1)
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13 + 23 + 33 n3 . (Hint Compare the sums you get here with
-

Examples A3-la and A3-1g in the text, or, alternativiy, aStume that the

required result is a polynomial of degree .4 .)

13. 1 2 + 2 3 3 . 4 -I- n(n + 1) . (Hint: Compare this with

EXample A3-1g in the text w4

14. Prove for all posite/integers n

(1 4- P(1 + -Z)(1 + -IP ... (1 + 2n
2
+ 1) = (n + 1)2
n

n
1 2 x2

n +1
15. Prove that (1 +x)(1 + x2)(1 + x4) (1 + x2 )

1 - x

16. Prove that n(n2 + 5) is divisible, by 6 for all integral n .

17. Any infinite straight line separates the plane into two part6; two-

intersecting straight lines separate the plane into.four parts; and

three non -- concurrent lines, of which no two are parallel, separate the

plane into seven parts. Determine the number of parts into which the

plane is separated by n straight lines of which no three meet in a

single common point and no two are parallel; then prove your result.

Can -you obtaina more general result when parallelism is permitted?

If concurrence is 'permitted? If both are permitted?

18. Consider the sequence of,fractions

1 3 2 17
' 2 ' 5 '-12 '

pn
cin

where each fraction is obtained from the precedingXcthe,rule

Pn ='Pn-1 + 2°In-

cin
Pn-1 + In -1

tha
p

Show that for.7n iciently large, the difference between and

:can be made as small. as desired: ShOw also that the apprOximation

to is improved at each successive stage of the sequence and that

the error-alternates in .sign. Prove also that prn and qn are rela-'

.-tiv
Pn

elytprime that is, the fraction is in lowest terms.
c1n.

.1
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19. Let p be any polynomial of degree m . Let q(n) denote the sum

(1) q(n) = p(1) p(2) p(3) p(n)

Prove that there is a polynomial q of degree m + 1 satisfying

20. Let the function f(n) be. defined recursively as follows:

Initial Step: f(1) . 3

Sequential Step: f(n + 1) = 3f(n) .

.R3In particular, we have f(3) = 3- = 3 , etc.

'Similarly, g(n) is defined by

Initial Step: g(a) = 9 .

Sequential Step: g(n 1) = 9g(n)

Find the minimum value m for each n such that f(m) > g(n) .

21. Prove for all natural numbers n , that (1 + ,/5)n - (1 - 15)n
n r-
2 1,5

is an-Integer: .(Hint- Try to express xn - y
n.

in terms of

xn-1 n-1 x'n-'- y yn-2 , etc.)

c.
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A3-2. Sums end Sum Notatidn.

(i) Sum Notation.'

In Section 1-1, fin the preceding aection, and maWother places we make

t

frequent use of extended sums in which the terms eXhib t a repetitive structure.
For example, In

)

Section 1-1 the area of a standard region involves the sum

(1) 0 i 1 - 1 + 2 3 + 3 . 5+ + n(2n - 1) .

We adagt a concise notation wbiCh indicates the repetition instead of spelling
it out. In this notation the sum (1) is written

E ac(2k - a.)
k=1

This symbol means, "the sum of all t rim; of the'form k(2k -,ly where k
takes on-the integer values from 1 o, n Inclusive." The Greek capital:
"Z" (sigma) corresponds to the Roman "S" and is intended to suggest the word
sum.

The notation can be used more generally to express the sum. of-any quanti-
ties 0ic where k takes on consecutive integral values; we may begin with
any integer m and end with any integer n where n ..na . Thus

7,

Ok 0
m + 0

m+1 m+2
+ 0 + + 0

n

. (Note the trivial special case, n = m , a "sum" of.one term:
k Om

ar=m

EXample A3-2a. If each'of the regions Rk in (1) is -a .rectangle with
height hk and width ir

k the sum of the areas may wC written

+ w2h2 + w
3h3:

+
vnhn E tikhk

Here are other typical examples:

3
1 2 3

2 1 +- 0 + 1 + 1 1 -17- 1 + 9
lc,- 0 1 + k

1 2 -30 + + +

6 r=
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5
E+ 3) = 5 + 6 + 7 -I- 8 =

j=2

A linear combination of n functions:

E aifj(x) = aifi(x) + a
2
f
2
(x) + + anfn (x)

j=1

A polynomial of degree.no greater than m :

m

c xl'= c
0
+ c

1
x c2x

2
... + cmxm .

i=0

Example A3-2b. -A simple but- important sum is LI, c , where c

j=1
constant, that is, a quantity independent of the index. j of summation.- The

n
-

quantity E c is the sum 01* n terms each of which is c ; "it 'ther.....,fore

j=1
has the value nc .

In any summation the values df the terms :..id the to mss: are not affected

by the choice:of:the index letter; thus

k=m j =m

We are free to choose the index letter and its initial value to suit our own

convenience.

{.- 'Example A3-2c.

. 2
:- 2

% (a) s = ,...

4- 8"
+a

2
=E a = E a

2- n.

)10 1:1 n=0

/
n

n-1.. n 1
n

(b) E. EL =
i a0 +

al
+ . . . 4- an =

0 ..E r 0
. n_,

1=0 j=0

Summation, is a linear process; the 'proof is left as the first excercise,

. below. -
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t

Exercises A3-2a

E(ark 4- Ask) = ,Efk- 4- PE g k
k=1 k=1 k=1

2. Write each of the following mhos in expanded form end evaluate:

5 .
i 5 zz)

(a) Elif
. , (a) m(ra 7,1)(m - 2) .

k=1 .
:

m=2

10 10

(b) II2J - (e) E 21. .

J=5 1=0

3 4 _E 4:.
-(c) I, (r2 + r 12)

.. - ' tfY r:(4 - r)!
r=-1 ., r=0

3. Which.o'f the following statements are true-and which are false? Justify

your conclusions.

10 <-

(a) E .7 . 4. 28

J=3 .

(b)

w
(c) E k2 = 10± k

k=1 T k=1

1000 . 1000

Ek2 = 5 k2

.k=1 k=2

(e) E k3 . n3 4. E _ 1)3

k=1

10 10

(f) k2
E k

m=1 - 113.

10.

(g) k,)

1 1- '.
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n-1

(h) J(i 1), _

.1=0 i=2

Ci) LE: f(aM
k=0

E f(a0
k=0

(.1) nE Ak -E k Ak = k A
n-k'

1c.:=0 k=0 k=0.

mE o(Ak _ Am- - 2m k
m-k

k=0 k=0

(k)

4. Evaluate

(a) n= 2

(1) 21 = 11-

(C) n 8

nE _ a
n

k=1

4-

'MD

if f(x) = x2 a. = Q , b = 1 , and

5. .SUbdtvide the interva], [0,1] into' n :equal parts: Izi each sub-
.

Interval
,

obta..,in upper and lower boundt for x2 Using sigma notation

usq these upper and lOwer bounds to.obtain':expressions for upper and.:

lower estimates of the areaunderthe curve' g 2
on [0,1] . If

you-cap evaluate these 'sums without reading elsewhere) do so:

6. (a) Write out the .sum of'thefirstt:7 terms, of.sn arithmetic progressiOm

with first'term a and comm= difference 6 . Express the same sum
in sigma notation.

In sigma notation, write the expression for the sum of the first n

terms of a geometric progression with first term and common

ratio r .

7. (a) Consider a function f defined .by

n.

f(n) = f(r'- 1)(r - 2)(r - 3)(r - 4)(r +

r=1

Find f(n) for n =a , 2 , , 5 .

(b) Giyelan example of a fun'ttion g .(similar to (a)) such that

g(n) = 1 n = 1 , ... 106

gkl06
.+ = 0 .

336
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8. Write each of the folloWing sums in- --expanded form and evaluate.

-3

.E r(n - 4-
4

2::
.].. r=1 .

N i R

(b) E( - 14
n=1 r=a;

The double sum
.

or

m n

EEF (i,j) is a shorthand notation for

i=0 j=0

{F(T,O) + F(14) + + F(1,n)}

I=Ov

F(0,0) + F(0,1)-+ F(0,n)

+ F(1,0) + F(1,1) + + F(1,n)

+ F(m,0

In particular

1=1 J=1

.+ 2 3 1.-..16 . EvalUate:

m n

F(m, 1 . F m,n

y.

= 1 1 + 1 '2 +

10.-

11.

(a)

(b)

: (a)

(b)

.If

EE
j=1

m -n

(i j)

1 1

1=1 j=1

Show that

Evaluate

k(k

1000

- 1) k - 1

k(k. - 1

, determiner(i)S(n)

i=1

{c) EE
m -;n

j=1

4- 2 ._ +-2 2

(J-4) -

m.

(d) min(14) -

i=1 j=1

1
'

k 0 , 1

A3-2

r

r( m) in terms of the sum function S .

) 4
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12. .Metemine 'f(m) in the following summation formulae:

1 = Ef(i
i=1

n = .

ja

(e)

(f)

(g)

cos AX =E
1=1

sin (an + b)

n! = f(i)

.

n

=2:: f(i) .

1=1

n2 = f(1)

1=1 i=1

n

(d) an2 + bn + c = Ef(i)

i=/

13. Binomial Theorem: We define

such that 0 < r < n . Also

(a) (z.P = (n) = 1

=(n ! 1) = n

.

(n)
(n - r

:a!

):
, n are integersr!

02 = 1 and (121.) = 0 if r > n . ShoW that

(b) (n n r)

r.1 n +
.

ix
+ 1 I

2:t5.4;5 "r

(c) Establish the Binomial Theorem

(x
y)n n n-r

yr = Xn -I-

nxn-1 ri= n-1
(r)x Y. 1- - - - + nXIbr 4- y >

, r=0-..

n = 0 1 2

14. Using the Binomial

: (a) (' -i- 7)3 .

(b) '(c.- y)3

2Z-,
15. Evaluate the following sums.

"- by mathematical induction.

Theorem, give the expawions for the ollowd:ng:

(c) (2x - 3y)3

(d) (x - Z,r)5

(a) (3(;)

(b)

ni

"g8

.3 4.3
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n n

16. Sum E i,(x.n. -,..n.
) by first showing r(11.) =E (n v ) and

-4..

- - r=0 4 -- r=0 r=0

using. 15(a).

17'. If P
n
(x) . denotes a 3olyriomial of degree n such that Pn(x) .-22=

for x = 0 , 1 1 2 X... , n fklid
.P a

(n + 1 ) .

(ii) Summation.

Exercises A3-1, No. 10 illustrates a Iparticulegrly useful sdmmation tech-

nique, i.e., representation as a telescoping sum. It was possible to write

1000 -

1 -1 + 1 1 1
-k(k - 1) .2 - 1 3

+
2 47 -I- +1000 999

, .

k=2 /..

in the form

1--z) = .(1 t) 1- 1 1 1
1

1
"' t (999 1000

k=2

:ate quantity s_btracted in one parenthesis is added back in the next, so that
,

the first two terms telescope from a sum of four numbers to a sum of two num-

ber-s, t112 first =h ee terms telescope' frOm a' sum. of six-numbers to ,EL Suit of

two numbers, Fin'al1y, the entire summtrion -telescope's- (or 'collapses).

into a sum of two numbers-.-the first -41Umber. in .the. fir term and-the .second

number in the last term. SymEOlict fir, a teleScopi has the form

n-

(1) Df(k) - ,Lf(k- .1)} f(p) f(m.- 1) .

k=m

- In the above example, we have m = n = 1000 , and f(k) 7

sum telescopes. to f(l000) f(i) =,- +
999

1000 000

so that the

f`"

We now use (1) to establish a short dictionary of summation formulae by

considering -differeirt fUnctions f(k) . Also, we let m = 1 without _loss of

generality. It f(k) = k = then._

n

k - 1 = n

*k=1

151
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This result is nothing new. Now let f(k) = 0
, then

n n n n

Et k -
2 i)2 E Ek _ E , = n2

k=1 k=1 k=1 k=1
or, equivalently,

1(3)
2

k = n(n + 1) .

k=1

By linearly. combining (2), and (3), we obtain the sum of a general arithmetic
progression .

(ak + b)

k=1

n(n + 1)}
2 bn

To obtain the sum we let.kc,f(k) = k3 Then,

k=1

141:: (3k2 + 3k + 1).=

k=1

Efk3_ (k
ic=1

-.n

gE
k=1

USing (2) .arid (3) ,.: ve Obtain'

n -

n

k=1

We now can' establish a sequential method of obtaining sums of the form

P(k) whose terms are values P(k) of a polynomiVunCtion. Because a4,41.

k=1
. polynomial is a linear combination of powers, and summation is .a linear process,

n
It is sufficient to give a sequential method 'for :E2kT , 14 a nonpegative

k2

3n(n + 1) n(n 1)(2n. 4-
2 6.

integer.
A

Chbosing f(k) = kr*1 in Summation, formula (1) gives us

k.=1

fk2"4-1

k=1

(k - 1)"1} = n
r+1

. Using the Binomial Theorem,we obtain.

(4)
kr+1 1)r+1

ti

+-1Yr + P(k)

340
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.81

where P(k) is a iiolynomial of ?degree r - 1 . Thus, the sum E kr can
.#

... k=1 .-
be expressed. in termseof sums of lower degree. Since we already have the sum

for r = 0-, 1 , airdr , we can repeat the method Sequentially to obtain the

sum. for any r (comilare with Exercises A3-1; No. 19).

We can enlargei our summation table by choosing other functional forms
,

f(k) , e.g., sinkak + b) . By (1),

n
4111

(5) E isin(ak. + b) sin(a(k - )1-1= si(an + b) - sin b .

kx--1

Using the identity

-sin A - sin B = 2 sing`

in Equation (5), we obtain

A ±'B
cos

-2

n ... ...,

si
an

n_ ---
(6) cos(ak + b - 2:) = cos(b + an .

2 2 a.

k=1 sin

If b = -11' , (6) reduces to ,

'rt
sin 1-1-12

(7). E cos ?ak .- cos'(a. + 1) 11) 2
.

2 . -a.sink=1

a /r
If.

2
b = + (6) reduces to

n

(8) E sin ak = sin(b

k=1

By choosing other functions f(k) , -we

formulae. We leave this for exercises.

.mss
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1. Write the follolting sums

Eto (k) - u(k - 1) 1 and. e-O-aluate.

k=1

(a) E kck -k 1) (e)

k=1

n,,

(b) E k(2k - (f)

k=1

(c) E 2k(2k + 1) (g)

n

(d) E k(is ,)(k +. 2) (h)

k=i

.acercises A3-2b

in telescoping form, i.e., in the form

2. Using E.{u(k) - u k

k=1
summation formulae

(a + kd)(a + (k +

of

(a)

(b) The reciprocal 'of
(c) r

k

(d) ki.k
.

(e)

(f)

... (s)

( 1)

( 1 )

3. Simplify:

k2 rk

k:

)2

arctan

k sin k

k3.

k=1

n
1E k(k 1)(k + 2.

k=1

k . k:

k=1

rk.

k=1

1)} = u(n) - u(0) , establish a short dictionary

contidering the following functions
1)d) (a + (k + p)d).

(a).

sin x + sin 3x+ + sin k2n - 1)x)
cos x + cos 3x + + cos 1(2n - 1)x).

3/4-2



A3-2

14. Another method for, summing Z P(k) (p ,a polynomial ) can be obtained by
using a special case of problem 2e., i.e.,

n.

E{(k 1)(k)(k - 1) r + (k)(k - 1)(k - 2) - r)}

5-

k=1

(n + 1)(n)(n - 1) ...

or E_k(k - 1)
k=1

First, we show how to represent'any polynomial P(k) of r
th

degree in

(n r+ 1) ,

r + 1) - (n + 1)(n)(n 1) ../(n - r + 1)
r + 1

the form

a,,k(k - 1) a rk(k - 1) ... (k - r + 1)
(i) P(k) = a0 + aik +

2:
+ +

r:

If- k = 0 , then a0 P(o) ; if k = 1 , then aa.= P(1) - P(0) ; if
2 , than a2 = P(2) - 2P(1) + P(0) . In general, it can be shown thatwk =

(ii) a = P(m) (m)1(m - 1) + (2)P(m 2) - + (-1)mP(o) ,

4
M = 0 , 1 p orow , r

Since both sides of (1) are polynomials of degree

r , it =1st be an identity.for m = 0 ,

Now

1 , 0011

sum E p(k) .

k=1

.find the following alms-Using Prob.

(a) E k2

1

(b) E k3

k.,

(c)

k=1

6. o (a) Establish Equation (ii) of Number 14.

(b) Show that -a is is zero for m > r

° 3143

r and (i)

S,..

is satisfied, (



*
Intel-141s an" bnI) for which r

-an+1 ' bn+1-
1 is a balT-interval_of

4[a
n ,b n.1 and such tha, f has no "upper bound on any, interval in"the set:

4 From the Nested Interval Principle (Section A1-5) there exists at least one's

A4--3.

Appendix 4

FUNCTIONS CONTINUOUS ON AN INTERVAL. .

.A4-1. The Extreme Value Theorem.

The-range of a function may include arbitrarily large numbers. For
example, the function defined by 1f(x) = on the domain (x : 0 < x < 1)
has the property that for any positive number z. >1 theme is at least one
value of f , e.g.

z + 1 = z + 1 , which is greater th This cannot,
occur for a continuous function whose domain is a closed interval.

THEOREM A14- -1. If f is continuous on the closed interval (a,b) then
.40-

f is bounded above on tAeinterval..; that is, there. exists a
number N for which f(x).: N for all x in (a,b] .

Proof. Suppose that the theorem is false: Then f(x) hasno upper
bound on [a,b] . It follows that f. cannot be bounded above on both of.-
the "half-intervals"

'

a +
2 '

ra +
2
b

Let. (al , b1] be. a
half- interval where ftx) lacks an upper bound. The same. argument applied
again..yields'a half-interval. [8.2 b2] of .18.1.,,1311 where f ha's no

'Upper, Applying the-argument recursively, we obtain asted set of

point g -comman to all the intervals [an b
' n.-

Now 4 is apoint,of [a,b] and therefore f is continuous. 'at -

Consequently, foz any positive -c there is a. 6-neighbflrhood of g wherein

so=
\. VOL< c

for those x an the domain of f In the 5.;2eighborhood. of , tben
f(x) is bounded above:

f(x) < fa) + c

345 34 ::;



But since

[ an , bn]

b - a <-52n

bound in

-,bn --a
n

b
n

a
t lies in [a

n
bn] , it follows that

2
is contained in the 5-neighborhood of g for,all n satisfying"

. This contradicts our prior oenclusion that f(x)

[an ,bn] . Hence our original- supposition that has no upper

bound on ['a,b] is false.

has no upper

Corollary._ If f

f is bounded below on

that for all x

When r

is continuous on the closed interval [a,b] , then

the interval; that is, there is a number N such

in [,...,1)] , f(x) > N

is bounded both above and below on [a,b] then there is a

number .N such that, for all x in [a,b] , If(x)1 < N ; and we shall simply

say that f is bounded..

Most often it is essential cud adequate to know whether a function is

push our analysis:a little furtfier, however, some interesting

The best upper (lower) bound for a function is, of course,

the least upper'-houndi M (greatest lower bound, m-) of the range of the

function. Considering the,factthat there are function values arbitrarily

:close to we- miight hope and expect that M is aCtually*s. function value.

That thiSneed not happen can be seen in the.fol mgproblem.
4 -

Is'there a .function among the'functions.define the closed interval

[0,b] with value _a at' 0 linear from 0: to p with slue 0 at p ,

and. 0 frot p to b (see diagram), such that b - .p + fag p?

bounded. If we

problems arise.

the

(0,a

(0,0
P', (P,q) b,0)

Figure 4-la

sum, of the length of theline segments that comprise the graph, is as

large as -possible? If p' < p then thg sum of the lengths of the segments

35C



joining (0,a) to (pc0)

of the segment joining

p' < p Since p cannot equal

tion),the function,

a -maximum value.

(P1,0)

(0;a) to (p,O)

(we

A4 -1

to (p,0) is greater than the, length

. Henee the L(p1) > L(p) if

would not have the graph of a func-

L : , though bounded by

The next theorem gives cons 'tion

occur.

THEOREM 3 -7b. (EXtreme Value Theorem.)

a + b , does not have

er which this difficulty cannot

1
If the function f is continuous

on the closed interval [a,b] , then there

in- [a,b] such that

for all in a,b] .

f(xm) < 4p=) < f(xm)

are numbers x
m and

Proof 1. Let M be the least, upper bound of the set of valueS f(x)
for x in [a,b] ; then for any number L smaller-than M there is a value
of f greater than L

is a point xk in [a,b]

intervals [a,

contain values

a +
2

xk

In particular, for every:positive integer k , there
for which f(xk) > M -

1
. Next consider the half-

,-

b
] an d [

a
2
+ b

for. infinitely

,b] .- At least one of the interval must

many integers k . (If botli only contained

then the whole interval'could only con-

Let tea , b1] be such an interval.

[a
2' b

2
] a half-interval of ra. b

1
infinitely many integers' k .

[an+1/ b
n+1 ] .a 'half -

xk for infinitely many integers

xk for a finite set of integers k ,

tain xk for a-finite set of k's.)

Now iterate the process and take for

which contains the values xk for

We define [a_ ,b.] recursively by taking for
-

interval of an , bn] which contains values

k

Observe that [[a
n ,b

n
]] is a nested Set'of closed intervals; that

consequently, there is a point t common to all of ,theca; and, as in the. proof

of Theorem A4-1, that any neighborhood of.'t .contains
n
, bn 3 provided n

We now that f(0 = .M . Since f is'Continucius,

such that. If(x) -

is sufficiently large.

for each e> 0 there exists a S> 0 f(01 < E for all
points 'x of the domain of f within the 8-neighborhood of t . The

5-neighborhood contains some interval [a
n

, b ] of the nested set and there -

fore contains the values xk for infinitely many integers k . In particular,

Ethe 8neighborhood must contain some value xv for which v > , (otherwise

34-1



the 8-neighborhood could contain only the values xk for the finite set of

integers satisfying [k < 1 ] ). SinceE

it follows that

1f(xv) - f(01 <

f(xv) > M - > M - c

M- 2e < f(t) <M

Since this inequality holds for any positive e we conclude that

thus the range of the function contains a'maximum value.

f(t) = M ;

Proof 2. Since M is the least upper bound of the range of f, for

every number M' smaller than M there is a value of f greater than M' .

Thus, for every positive integer j there is a point xj in (151.4b] such

that f(x ) > M- . Suppose that M is not in the range of f . Then the

function 0 :
, -

1 is continuous in [a,b].. (Theorem 3-6p), hence317777
,

by the Boundedness Theorem 0 is bounded; But p(x m - f(x )) = > j , hence

0 is not bounded. =Contradiction: J,

Exercises A4-1

1. Is the continuity of f essential to the hypothesis of the -boundedness

4heorem?

2. Can a discontinuous function whose domain is a clOsed interval be

bounded?

Do Numbers 1 and 2 amount to the same question?

4. ,Can a nonconstant fUnctiod whose domain is the set of real numbers be

bounded?-

ve an example of a monotone function on [0,1] with exactly n points

of discontinuity.
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0 Can a monotone functiOn on.10,1) have infinitely many points of

disContinuity?"Justify your answer.

7. (a) Give an,example of a bounded function_ f defined on [0,1)- such

that ,f has no extreme values.

(b) Repeat (a) with the extra condition that f have'an inverse.

8. Give an example of,a function f 'defined in the interval [0,1)

t-
such

that

(a),.f has neither an upper or lower bound.,

(b) f hasa lower bound but no upper bound.

;4'

(c) f achieves the upper and lowe bounds an infinite number of times.

(For this-case give a function. t. is not.constant'in any inte:4a1 )

Show that:any function f satisfying Num 9(c) cannot be continuous--

in,the-entire interval.

_10....Give_anexamtple of a.function _f defined on [0,1) such-that -f -takes--

on every.. value between

for all x .

0 and 1 once and only once but is discontinuous.

11. Show that a function which is increasing at every point of an interval

(a,b) is an increasing function in (a,b)

A 12. A function 0 is said to be weakly increasing on the right" at a point
a if fd.r all x in a neighborhood [ale. + 6] , 0(x) > 0(a) .

Tr :

(a) Show that if 0 is continuous and weakly increasing on the right

of all points in (b;c)-- then 0 is weakly increasing in. (b, c)

(b) Show by a counter-example that (a) doesnit necessarily hold if 0

is discontinuous:

103.: A function has the property that for each point-of an interval where It-
..

is-defined,.-there is -a neighborhood in whi h the functionis.bounded.

Show that the function is bounded over th whole interval. (This is an:

eXample where a local-property implies a lobal one:. It is clear that

the global property here implies the loca one.)

A14. Give an example of a function defined everywhere in a closedinterval

but unbounded in the neighborhood of every point of the interval.

(Suggestion: See Exercises 3-50 No. .)



A4-2. The Intermediate Value Theorem.

The idea of continuity as expressed in the first two paragraphs of

Section 3-5 is simple and intuitive. However, in order to attain a precise

and workable definition, we abstracted what we thought was the essential

property of continuity to, give Definition 3-5. How do 'we know that our defi-

nition is appropriate? Is our definition in agreement with our intuitive idea

of continuity? DO the functions which satisfy our precise definition have the

properties that we want continuous functions to have? Whenever we engage in

the,processof giving a precise definition of an intuitive idea, we gain evi-

dencefor'the appropriateness of our definition by "provibg the obvious"

obvious In thattheroperty is perceived directly from the intuitive idea,

and:px:oven in 'the serhe that it is implied by our precise definition. In

Section 3=7 we saw that the Intermediate Value Theorem. was obvious. Now we

Shall prove'it.

THEOREM 3-7a. (Intermediate Value Theorem). Let f be continuous on'the

closed interval [9.,b] . Let v be any number between f(a) and

f(b) . Then there is a number u is [a,b] _such that f(u) = v .

Proof. Suppose f(a) < v < f(b) . Let S : x c [a,b] and f(x)

The set S is not empty since a t S and it has the upper bound b ; con-

sequently S has a east 1),-per bound u in [a,b] . We proceed to show that

f(u) = v . First, u cannc an endpoint of [a,b] since, by the continuity

of f , f(x) <:v iL a .71ef-.7.7hood of a and f(x) >v In a neighborhood of

b . Next, every neighood of u contains points such that f(xY.(v

.(since u is the least upper bound of the set of such points) and points

such that 'f(x) >v (all'points to the right of u ). It follows that

f(u) = v , for if f(u) were greater than v then by continuity all points

x of some neighborhood of u would satisfy f(x) >v and, similarly, if

f(u) < v there would be a neighborhood of u where f(x) < v , (cf. Lemma

3-4) .



Exercises

1. Can a-discontinuous function have the intermediate value property?

'Give examples.

A2. Let the function f be the derivative of a function g . Prove that

f has the intermediate value property.

J

-Given the half-circle y = 1677 , it can be'shown that chords parallel.

to the x-axis of length 1.-

1
1- exist where n is any positive integer.

This resultcan be generalized to any continuous function taking on.the

value 0 at 0 and 1 . Chords which intersect the curve, or lie

entirely outside the-curve, or coincide with the curve are permitted.

Prove this.

1 j

3 5 5
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A4-3

A1. -3. A Nowhere. Differentiable Continuous Function.

Here ye exhibit a Weierstrass Function, that is, an everywhere continuous

but nondifferentiable function. The idea is to take a smooth curve and
"roughen" it in successive stages of apprOximation,-to a curare which -is. still

continuous but everywhere rough.

We-sha11 use polygonal approXlmations.

ing two consecutive vertices (al ,b,), and

tr
following construction. We set h -

a
1 a

2
3

replace the original segment by the zigzag line consecutively joining

...." :

We roughen the line segment join-
,

(a b )
2 '. 2 '

where al "2 , by the

and k O. 3 ( b2 - ) , and

vertices:

(ea b2) + ,.b
2

k

(See Figure-Ak-3a.)

;

; (a2 h' , b k
, 2 1 (a

2..

( + h , b2 - k)

/

(al,b1)

Figure A4,3a

Thelidifferences in height of the

0.7(b2 , 10.1 b

x

the

successive vertices are, in,:order,'

b1) 0.7(b b1) .

a



- k -
7_

Thus
'1
-tte absolute-difference in .height between consecutive vertices is no

. -.
greater than 0.7(b2 - b1).. In going fromoneStp of approximation :to the

next;then, we reduce the absolute difference in lieightbetween two-CdnsecU7

tive vertices by a factor no greater than 0.7 . This is the property which

A1+ -3

will yield Continuity in the limit.

The three consecutive

tive slopes, in-order,

Where m is the slope of he original segment. We see therefore
a

b
1

2 al

segments of the zigzag.line have as their respec-

,

2.1m , -1.2m , 2.1m

that the steepness or absolute vald.4--Of the slopes has been multiplied by a

'factor no,..less -Qom 1.2 . The increase in steepness of the segments is-the

property which will yield nondifferentiabbility in the limit. 4

Note that as we pass from the segment to the zigzag line, the endpoints

and midpoint of the original segment remain fixed.
I

For the construction of the Weiei-strass function f we begin.-mitht.he

segment of the line y =.x on the interval 0 < x < 1 . The next step is to

apply the construction/above to replace this segment by a zigzag (solid curve

,in Flgure.A4 step-3b). At the- next ste,We'replaCe-the segment over eslc1;.third of

the interval by a further-application of the construction; all iudCeeding.

steps are simply iterations of this procedure. The first five iterations are

shown in Figures A4-3b

First we observe that'at the n-th step all vertices of the.polygonal

_Curve, the .points With abscissas

:(3 = 0,1,2,...,3n
4

)

3
.'

remain vertices at the next step. It follows that these points lie on all

the approZimatl,ng polygons from the n-th step on, and hence are points of'.

the prospective'limit curve. Therefore, if we let f denote the Weierstrass

function, we observe that this construction defines f unambiguously for.all

the' ternary fractions; i.e., for all values x = n
, for n = I- ,.2 , 3-"

and -j = 01, 1 , 2', 3n . We shall use this result to ,.define f

----unambigdously. for all.realva.lues-asth-Continuouiecompletion of the'function

defined onlY:for. ternary values.
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Figures .A4-3f

355

1.00



.4

.A4-3

- -

From our discussion of the,zigzag cons-Eruction we observe for two succes-

-sivelvertices k
i and xi

-4-2-

of. the polygon obtained at the n-th iteration- ,

that

(1) If(xj+i) - foc )1 < 0.7n
j -

where, x = --..-L . Thia is the basis for the proof of continuity 'for the liit
i n.

function.

(x.j.i.i? f(xj÷i)

3
Mbreover, for-Vie slOpe of the chord Soining:- (xj ,f(xj,j

we have

(2)
f(xi+3.)

Xj4.1

-It is clear-
S'from-(2)that in every subinterval, no matter how mall, we can

0.
find chords as steep as we please. We shrill see that (2) imillies.that-no

.derivative exists at any point.

7 Although we have fixed.the values of the Weierstrass function a

ternary points we have yet to define :.f(x) -when.. x. is not'a-te

For each n let j be ch6Sen so that'

. _

where
.in

a = . Observe that a >a, and b <7b and that f(a )
n

3
n 224-1 - n lit - n' m+1

and f(bn.4.1) both lie between f(a )' and .f(bn) Thus-the set -of closed,

intervals (In ) where In has 'f(an ) and, f(b ) as .endpoints is nested
...

In the sense of Sectioi2 A1-5. The one real number common to all the
4

'intervals In is taken as f(x)'. From this way of defining f(x) it is easy

to prove continuity; for c > 0 we-choose n so. large that 2(0.7)n < E

and take 5 = 4-n . If Ig - xl. < 5 and g < x , then by (1)

8-FY Po.

a < x
- -n -

If(0 - f(x)I < If(g) - f(an)I + if(an) - f(x)I.

Similarly, if
I

-

N
< 2(0.7)

n

xY .< 5 and

if(g) f(x)I < If(t) - f(lon)L+ - f(



.4

Now we prove that the function f cann have a derivative anywhere.

In particular, we can find a ternar4.point in

that the chord Joinin...- f(a))- to (f3 1.f(9
For this purp9!' (a ,-fkaj as a ye ex

(n >.q)

For a ternary point a ="7ia
39

any neighbOrhood of a such

has arbitrarily large slope.

on _the n-th iterated polygon

and.. take

Thus we have

and., by (2)

A4-3

a -
p3n-q

3n

p312-q* 1
- 3n

1
3n

If(0) f(a)1 >(1..2)11.
13 a

Clearly, by taking n large enough we can obtain a chord with slope as large

as we please in any neighborhood a . For any value -r in the intervea

0 <,x <1'. which is not a ternary point we can find two successive ternary

numbers x , x of the subdivision at the n-th step such that

ea.

xj < r <: x

From (2) we Imow- that f(xj+1) / f(xj) , say f(xj+1) > f(xj) (the argument

for 'f(xj) f(xj+1) is similar). There are three possibilities (Figure A/4-3g):

, f(xj+i))

xj r xj+1

Figure AI. -3g

357 3 6.1
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.A4-3

(1) The point; (r f(r)) lies on the chord Joining..

-3+1' j+1)f(x ) then .

- e .

to*

Xi -

(2): The = point lie'S above the-chord; then

f (xj). - f( ) f(x4,) fCxj
-2>x - r x xj

(3) The point lies below tha chord;- then

f (c ) - f(r) f(x) - xj+1 +1 > (1.2)11xj+1 - r xj+1 - xj.

a

* -

Again in any neighliorhood of r wg can find points for which the slope of the

corresponding chords can be made as large .as we please.

I

Exercise A4-3

1. Show that the Weierstrass function is not monotone in any interval.
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Appendix 5

IMPLICITLY DEFIUEDFUNCTIONS ANTpLTHEIR-DERIVATIVES

In Section 4-8 we gave without proof a method for differentiating

implicitly defined functions.. Several points remain to-be clarified: if a

relation between =two variables does 14 express one variable explicitly in

terms'of-another,. cfrolnitancei may it desCribe a function

imPliCitly?.. is-the implicitly defined funtion'Zifferentidble?, if it is

differentiable,. how. maythe derivative be found? We.consider an example which
do

exhibiti most of the difficulties, the equation

. .

(x2 ) cg(-x2 -42Y ) = C
.

Whose graph is the lemniecate:of Bernoulli (see Figure A5a) .

( -c,O)

(cab 6Ig-

c, 0)

Figure A'a

Fop' each point (a,b) on the graph other than (0,0) , (c,0) , and
,

(-c,0) there is a neighborhood of -(a,b) wherein no vertical line meets

The idea of neighborhood *of.a. point. of _the plane. is^ a. natural extension .

of the idea of;ndighbOrbood:.of a point on the*number'aine- The 6-neighborhood r'
of (a,b) is the square. -.

((x,y) Ix al <.6 and ly - bi <6)

In this appendix a 3-neighbOrhodd of a point is to be understood as a
linear neighborhood of the point if it is described by one coordinate (point
on the number line), as planar neighborhood of, the point if it is des ribed
by two coordinates (point of the plane).
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A5

the graph more than once.(Figure A5a).. such
L -

graph ,can be..represenied by a functiOn f -377-41.ty,. where

a neighborhood, then the.

11

F , x)) = (x, (x)]2) 2 -:c2 2
[f(x))2) 0 .

We cannot do the same thing at 0.0):.or at the points c,0) ;,Amtnone of
these points can the entire gra in .a neighborhood be represented by a fling-

, .

. , ;
It is easy to see analytically why the relation F(x,y) = 0 must describe

afunction in the neighborhood of.some.points of its graph. , For'example,-iet
I'S restrict x- to the open interval (0-,C) and y to be nonnegative. Along
a vertica-1!_line x = a we.introduce the 0 given by

k(y) = F(O,y).= (a2 +.y2)2 - 2(a2 'y2)

Now-we observe that 0a can have both positive and. negative values;'namely,

Oa(a) -= F(a,a) = 4a4 > 0

and, since a < c ,

Oa(0) = F(a,0) = a4 c2a2= a2(a - <0 .

Since Oa is a polynomial unction, hence continuous, we now'know by the /.

Intermediate Value Theorem that there is at least one zero of 0a . in (0/,a) I
-

in other terms, the vertical line x = a , for' 0 < a < c .4 must meet .the-

graph F(x,y) = 0 in at least one point above the x-axis. In order that the-

postion of the graph F(x,y) = 0 in the given region. describe a function,
each line x = a must meet that part of the graph in no more than one point.

This will be the case if 0
a has no more than one zero, and, fdr that, it is.-

sufficient that Oa be strongly monotone. Since, for -y >0 and .0 ,

56;.(y) = 2y[2(a2 + y2) + c2 > 0

we see that 0a is increasing. Consequently; there is exactly one-value
y= b for .which ,0a(b) F(a,b) = 0

In this -limy we have proved that to,each number

corresponds a unique value b >0 such that. F(a,b4

the equation F(x,y) == 0 , subject- to the conditIons

defines a unique function f such-that F(x,f(x)) = 0 .

x = a 'in '(.0,c) .'there

0 . In-Other terms,'

s (0,c) and -y->0 ;

This same approach
to the definition of an implicit function will now be, generalized,



THEOREM A5a. Function Theorem). -Let F :

A5

(x,Y) F(x,y) be a-

function defined. on a k-neigh borhood of [a.,t6 satisfying the conditions

(i) F(a;b) = 0 ;

(ii) For any fixed x , 'say x = g . in the k=neighborbood: of a

function 0 : y F(g ,y) is increasing and clantinuous;!-

(Ili) ) For a:AY fixed y , saY in the k-neighborhood of b the

function * : x --0-F(x,71) is continuous;

Under these- conditionsi-there exists a unique .function .f x
defined on an h=.-neighborhood <- k) a for vhiCh the range:-of

is contained in the k-neighborhood' of b 7., :and

that

f: :is continuoUs'.

Proof. Since .0a is strongly increasing and F(a,b) . 0 , it follows
lb

0a(b k
< 0a(h) < 0a(b + t).

.

and, since Oa(b) = F(a,b) 0 , that

0a(b - 2) < 0 < 0a(b t-')

or in terms of F(x,S.r. N

-F(a,b - 1-;) < 0 < F(a, b

We set u = b - and v = b + and -write this ine
2 2

functio s Nru and '-grir

*.(a) o *
1r(Aa .u

. . _

Since - v are continuous fUnctiOns ve conclude from LE=ma 3 -4

that there-7,1S an h- neighborhood of a hg-; both
r

y.

f

in terms of the.

-,*
If

-fox each

t

inconditiOn (ii) of the hypothesis, 0 is a decreasing function::

, then.the theorem applies146en-.:F(x-,Y) is reilaced. by .17(x,y)

i. z-361
r)



A5

that Is

`'so that-.

< o &ct I> o ;

F (x , b - 1-c) < 0 < F(x , +2

(b
k

. ) < 0-< x 2
(b + -11)

2

for lx - al < h ;

for x - h .

Because.. 0 is- a continuous function of y it-l'ollows from the Intermediate
Value. Theorem. for each x - satisfying lx - -al < h -Chere is at least one

k. /is strongly7. with ly:7 1)1" < 2 fiqr ,.0x(y)- = 0 ;- -since
monotpiie the number y. i s unique' The flan f : x

is the unique:f.unction satisfying conditions (1) and (2)

Y

'We _have

where Ozi(Y) -=- 0

(Figure .A5b).

A51Y

show that af.,. is continuous. For anoint
the k-neighborhood of . .(a.,b) such that F(cc,13.) .=....0 there exists a4 ' ... ..
k'-neighborhOod.Of (Pcfs.)- -within the k -neighborhood of (a;b) ; hende, in the. .

k'-neighaprhood all the conditions of the"
..

theorem and all .the conclusions
. .- . .

C . _drawn from them above are applicable. In particuiser, no .matter how small lc'. ,

362
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1 kithere e an h' for which If(x)- f(a)1 < whenever Ix - a] <1:1'.

bu this is precisely the condition for continuity.

From Section 4-8 we expect that under suitable conditions the implicitly
defined function f is not only continuous but that f haS a derivative which
'is`easily computed:. To prove this, we shall look at the derivative in..a way

which IS"us'efUl in many contexts (Section 5-7, aIso.Taylor.'s Theorem, Chapter

a3). We try to approximate afunction g locally (near. a )..by apolynomial.

We.could, of course,/iipproXithate g near 79. by the constant function

x .- The next. Interesting possibility is a linear- function and_we

g(x) -as tbe:suth.of a linearterin plus anerror-teim; thus

(1) g(x) = (a:÷ 15( a)]

.

express

--If' the linear- part,--

error term; ei(x),

Ix -71 is Small'

lim e(x)=.0 .
x -a

tiable at a ,

differentiable

(2)

and

foil all

lation suggests bow we may extend many of the properties of linear funetions

to differentiable functions. Let gi(x) = cl(x - a) + d1 ,

. .

ce'14-13(* --a) -IS to be cothpletely."SIgnifiCant then the:

,,,houldbe'small in Comparison with the linear term when

That is, if we write -e..; (x) = e(x) (x - a) we -want

This is equivalent to the requirement that g be ddfferen-

and thEilsta) = a and g'(a) p . Thusy-tie cunction g is

at a if d only if for some number. p.,

g(x) = g(a) + a(x - a) + e(x)(x - a)

lim e(x) = 0
x'-EL

x in the domain of- g and in some neighborhood of a. . This.formu-

g
2
(x) = c

2
(x -

functions

aY-1- d2 , then gi(a) = ci and g(a) = c
2

. For these linear

.(g1 gi)(x)

2)(x) = d2) (c1 + c

dl (eld2 dle2)(.

=
-14

c
2
(x a)7

EL)

- a

)+ d
1

= d
1

+.. c
1
d
2

-
ela ele2

and we find the appropriate derivatives as the coefficients Of (x - a).

if we think of .ibese, linear functions aa-apprdkitha.tions to otherNbreover,

funct

general-.

we see that.these.i'ormulas give the correct. Coefficients in' the

Our new perspective provides a. method for discovering theorems

-363



as well as the means of proving them.

Thus fora function F -of. two varihbles, the requirement of differen-

tiability at the point ..(a,b) is put 1.16 the following form: there exist

numbers a -813.4.1. p , functions ei and e2 , such that for all x in some

neighborhood of a , all y in some neighborhood of b F -has the represen-
.

tation,

1

clb
(.2) F(X,3') = .F(a,b) .a ( X - a) 0.(y-b) + e

1
(x,y)(x=

-
a.).+ e

2
(x,Y)('y-b)

where for each lei(x,y)1 and 1e2(x,y)1 can be kept less than e by

restricting (x,y) to a suitable 5-neighborhood of (a,b),

x - a 1 < 8 and ly b I < 5 .

Given this -conCept of 'differentiability of , we may expect that the function

f fx:om x to y defined implicitly by,the:_equation F(x,y) = 0 , will have

the same derivative at x = a gas the function f
1

fromr x to y- defined

tnsolicitly,by the equatiomr

,

For the funotiOn f
1

if 13 / 0 we have

a(x - a), .+ p(y _

y = f
1
(x) -

.
- a), + -pb

so that Thus, we expect that f is differntiable at a and

teat f! (a) . This is, it fact, the case since

0 = afx - a) 74-- (x) ix k x)) (x - t e2(x , f(x)).1.x4,

J7'tee have

!.

whence

f(X) - f(a)
x

aim t

M. . .1.1

f(x) .- f(a) .(: ,a_ el(pt.

x - a 1E5

:

413 .
+ e2(x,fcx)y .

._. . .e

Since we alreEbc..-kmicw that-4 . is dOntinuous-,

in -a. neighboihoOd of, . la - Thlis,. ft ( a) = - a 4.
following theorem. ,..,...

,

_ .

and e
2

are -for X
...-

'silence we have ifrOVed. :the



A5

THEOREM A5b.
I

If F(x,,yY satisfies the conditions of Theorem A5aand F is
differentlable at (a,b) with' a / b , then ttie fUnction defined
implicitly by F(x,y) = 0 in'a neighborhood of , (a,b) is differentiable
at a' , and f'(a),= - .

5

Remark The numbers 'a , 0 are (in the notation of the preceding section)
lqa(a) and 91;(b) respectively.

Exercises L.2_

1. Find conditions fOr which the equations

i1 t+b1 x-f-c1y.+d = 0

a2t + b2x + c2 d2y+
=

determine x and y as functions of t

2. _Consider linearaepproxitations to. F and G ; then use Number l to
ge-neralize Theorem A5b to the situation

F(t,x,y) = 0 = G(t,x,y) .

Propose an expression for Dtx.

3. Pro ie that the following equations,

the points indicated:

CO 3x
2

4' xY 3Y
2

ti

(b) x3 - 3.Xy

(c)f .cot xy = 1.r.)oc
'2 p

4. Find the first andsecond
(c) of Numbe'r 3. 7

7 , (t3,..0)

,

have unique solutions Tor. near

,

deriveti/es of the solutions
- ta

I.

Show that there is no unique solution for in Number 3 (b) near the
point (22/3,21/3)

,7

(b) , and

ForoSsible inv a functions of. -show .thak

d2y-
2 [2d d)6

2
y-. (V3 !

4
. _I
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acceleration, 409
tiintiderivative, 427
arccos, 144
arclength, 385
arcsin, 143
arctan, 144
area function

additive property, 367
order proierty, 367

asymptote, 230
'horizontal,232, 2a4 ,

oblique (slant), 233, 234
.vertical, 232, 23k

attenuation equation,502

Binomial Theorem, 338
bounded growth, 512
bounded' set of points, 261
4 greatest-lower boUnd, 266

least upper bound, 265
bounded. variation, 649
braking coefficient, 513
Buniakowsky-Schwarz inequality,

catenary, 489 .

-COuches inequality, 253, 4)3
Chronaxie T 5019

composition of'ftnctiOns 285f, 102
conic, section, 313-

. directrix, 31,3
.

eccentricity,' 313
.focus, 313_

-constrained extreme value
continuity . .

of composite ruination
(Tb. 3-60,.103- .

ofrdifferentidUe function
(75d. 3 -6d), l01

on the intervali 108
.intuitive,idea,. 62

. Of inverse function (h.- 3-6f) , 104
..plecewise, 589
of product of continuous functions
.(Th -61)10

:Or quotient of continuous- functions
(Th.- 3 -6c), 100

of,sum of continuous functions .

(Th. 3-6a), 99
_ convex set, 207
couv.exiy, 206-

, flexed. downward; 2.011-231.1.
- flexed upward;.'297, 208,.-234

" -

_cosine integral, 435
cover of an interval, 645

decay coeffiCient, 499 1.
decomposition into partial fraction 563
decreasing functiOn, 299, 234

weakly, 299, 196
derivative

of ax , 6
of arcco4s x, 147-
6f arcsin x, 147
of arctan x, 147
of compositions (Chain Rule)

(Th. 4-6), 149
of cos x, 139
of cot x, 139
Dx 117
of ex , 465
of f:x -oc, 118
of f:x-x..,_ 118
.of f:x-ex,E, 118
of1f:x -ix, 118

403 °SP:x-41,118
Ixl, 118

of SI 117
Of a fiantion "at .a point, 49'
of inverse of ,differentiable functi-On

(Th. 4-3), -132
of linear combination (Th. 4 -2g.), 120
of log, x 445
of polynOmial (Th. 4-2c, Cor.2), 125
of polynomial of differentiable
function (Th. 4-2c, Cor. 3), 125

power rule for positive integers
(Th. 4-2C), 125

of a product (Th. 4-20" 122
of quotient of differentiable
function (Th. 4-2d, Cor. 1), 128

of rational function- (Tb. 4-2d,
Cor. 2), 129

of reciprocal of differentiabL-
function (Th. 4-2d), 128

of right-hand and left-hand, 121
of sin x, 139 .

. )successive higher, 159
oktan x, 139

differihtial'equations, 429
ex (T4. 875a)i 471
sin x, cos x (Th. 8 -5b), 472

direction angle 30
displacement, total, 408
domain of a function; 269 :-

problems, 213



, 1161r 48o
properties of, 477

ellipse, 313
focal chord, 314

-latus rectum, 314
energy.denSity, 503
epsilonics, 67f.
exponent

- definition of zero exponent, 11 4
general laws for negative
integers, 44

-general laws for positive
integers, 445

rational exponents, 447-
exponpntial function, 447

-4371-yetiIre of, 448
inverse function, 448

. exponentially damped sinusoid, 607
Extreme Value Theorem (Th. 3-7b) , 109

proof, 347
extremum, 173

-isolated, 199
local, 176, 1812-'200
on open interval (Lemma 5-2),
Nels.tiye, 176

field, 245
function

absolute value, 95, 274
composite, 286
even and odd., 276 -

integer part, 57, 275
gi,e-to-one, 290 .-
pei-iod3c, 277-i
-signum,(Agn),-276, 61, 62

function definition, 269
circular, 3032.137
constant, 274
explicitly clefined,.162-
identity, .2)4
,implicitly defined, 161
inverse circular, 14,3f.

FUndamental Theorem of calculus,,425

178

F.

-global properties of f, 169
graph sketching, 229, 233

-r;Greents function, 616
growth coefficient, 497, 513

-half-life,-499
Heine -Bore1 Principle,-645

'hypvrbola, 313 7

hyperbolic functions, 485
cosh 485
derivatiNi-es of, 485

inverse 488
sinh x,
to nh c,

hyperbolic sector; 487

implicit differentiation, 162
Implicit Function Theorem, 361
increasing function, 299, 110, 234

weakly, 299, 196
indefinite integral, 427
dnitial value, 497
initial value problem, 430
integral

continuous function, 648
definition, 377
estimates of, 1117
existence, 638
Ekistence Theorem (.Th. 6-3a), 378
geometric propertieS, 388 .

limit of Tiemann sum, 383,.6 -3
\--of monotone function (Th. 6-3b), 379

integral operator, 617
integrals :

convergent, 582
definite, 570
definition, 581
divergent, 582

4014 improper, 578'
symmetric, 571

integration, 535 .

of constant times integrable
functiOn, 394

Of-linear combination. .of integrable
functions; 393

by parts,.554 .

of a polynomial, 633
of. rational functions, ..563.9
special reductioris; 573 ,
substitution. of Circular
functions, 546

Substitution Bule.(111,10-2), 511.0

of sum of integrable' functions, 395
Intei.mediate Value Theorem (Th. 3-7a),.109

proofo.,350
interval,i259. -

cloSe4, 259, 109
interior point of, 259
length of2.259 -

.m4point of,- 259
open, 259, 109

inveri.se function, 131, 291f.

1. I%

. 4.

Lagrange rule of4variation of
parameters, 615

latent' period, 509
Law of the Mean; 186, 190



lemniscate_of -Bernoull, 313 359
limit

of f at a, 58f.
right-hand and left-hand190, 578.*
sin x

138

limit theorems
constant function (Th. 3-4a), 79
constant .multiple of a function

(Th. 3-4b), 79
-...linear combination of functions

(Th. 3---4c, Cor. ), 81
non-negative function {Lem. 3-4.

Cor 2), 84
roduct of functions-(rib:
tional function (Th. -49,
r. 2), 86

rect al:of function .

(Th. 3-14.e), 85
- Sandwidh Theorem (Th. 3-4f,

-Cor. 1), 86
Squeeze Theorem. (Th. 3-14f,

Cor. 2), 87
sum of functions (M. 3 -1.c), 80

. linear approximation to f, 223
linear differenatal equation of fixtst.

order, '590
forcing term, 591:
fundamental solution, 594
general solution, 5914.
initial -,1telproblem; 592
noViomogeneous equation, 595.

reduced equation, 591.
..yainear differential equation of
-7.or second o -r 603

homogeous equat
sup .sition

,
r

.local prope 3r--ct
4-"' 108

logarithms
base e, 14.61
base 10 (common)
derivative 11.9

-function. 414.8
. t4. an 1452
logistics equation, 513
lover sum over 6; 376

model
_for 'growth, 497
for decay, 14-99-

e function., 2991. 196, 14-15,
rse of strongly monotone

f-,..-action (Th. A2-4), 300
mar combinations of, 415

p ecewise, 415
section -1 1y, 14-15
strongly, 299, 178

neighborhood, 260, 58
deleted, 260, 58.

2 of co, 587-
radius -of., 260

nested, ,interfal principle,
nonhoniogenethis equation, 595
norti of 'the partition; 379
normal ata point, 226
notation

Mathematical inductionr.,.319-
:-..-..f.iiVt,principle4;323.*-

--second_ princli4e;.°327...
local',ocia; a77; 181, 198, 205, 231.

minianim,-local, 177; 181, V8,-
mean life-time, 1.99 -

Mean. Value Theorem of. integral.
calculus, 402 ,

od of equated coefficients,
.

.

117
( difference ) , 156
(increment)., 149

156.dx
fr , 117.

-Leibnizian, 156
"

!orthogonal tz-ajectoriesr 622

"4 parabola, 313
ParaMeter, 44..
partition of ,f.a.;b1.-, 376
piece-Wise: continuous, 589
piecewise monotone, 415
point of inflectidn; 230; 234_
polar axis, -308
polar coordinates, 308
primitive ;of f, 14-27

radioactive decay, 500 °
radius vector 308
range. of a f1,3,Ltion, 269
real numberi .

algebraic -properties" csf,. 245
o 'order relations of;
rectifiable, 651 ,

recurrence relationS, 558,
rhed_base, 508

2314..0 .Riemarin'sum, 381
limit of, 383

Rollers Theorem ( Lemma 5-3) , .347-

e



scattering coefficient, 503
second derivative, 205
separable differential equation, 621
Separation Axiom, 263
slope, 30
standard__ region

lower bound, 370
upper:bound,. 370,

Stirling's formula, 482
sum natation,. 333,.371.
-summation,. 339
superposition principle, 604
supremum,
symbol

max Crl' r2,

,min (r r2,

255
symmetry, 570

, rn), 255

rn), 65, 72, 74,

tangent to the curve, 223
tolerance a (error), 32,63
triangle inequality, 255

upper sum over a, 377

. velocity
average, 42
instantaneous,

volume -of solid of revolution, 405

Wills's Product for 2 575

1461.erstress function 352,-111

14


